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I. Introduction

Asthma is a complex chronic inflammatory disease of
the airways that involves the activation of many inflam-
matory and structural cells, all of which release inflam-
matory mediators that result in the typical pathophysi-
ological changes of asthma (Barnes, 1996a) (table 1). By
inflammatory mediators, we mean cell products that are
secreted and exert functional effects. We reviewed the
mediators of asthma in 1988 (Barnes et al., 1988), but
since then there have been major advances in our un-
derstanding of the mechanisms of asthma and the role of
inflammatory mediators. There is now greater under-
standing of each mediator; in addition, novel mediators
of asthma, such as the cytokines, have been identified.
To date, .50 different mediators have been identified in
asthma. Advances in this field have been greatly as-
sisted by the development of potent and specific inhibi-
tors that either block the inflammatory mediator recep-
tors or inhibit mediator synthesis.

In writing this review, we have focused on new devel-
opments since 1988 and have emphasized studies in
humans wherever possible. There is a vast and rapidly
increasing body of literature on mediators of asthma;
therefore, we have been forced to be somewhat selective.
We have chosen to emphasize the mediators and effects
that we think are most relevant to human asthma.

A. Cellular Origin of Mediators

Many inflammatory cells are recruited to asthmatic
airways or are activated in situ. These include mast
cells, macrophages, eosinophils, T lymphocytes, den-
dritic cells, basophils, neutrophils, and platelets. It is
now increasingly recognized that structural cells may
also be important sources of mediators in asthma. Air-
way epithelial cells, smooth muscle cells, endothelial
cells, and fibroblasts are all capable of synthesizing and
releasing inflammatory mediators (Levine, 1995; Saun-
ders et al., 1997; John et al., 1997). Indeed, these cells
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may become the major sources of inflammatory media-
tors in the airway, and this may explain how asthmatic
inflammation persists even in the absence of activating
stimuli.

B. Synthesis and Metabolism

There have been major advances in our understand-
ing of the synthetic pathways involved in the synthesis
of inflammatory mediators. Many of the key enzymes
have now been cloned; in several cases, specific inhibi-
tors have been developed that may have useful thera-
peutic effects. 5-Lipoxygenase (5-LO)b inhibitors, which

inhibit the synthesis of leukotrienes (LTs), have already
been shown to have beneficial effects in the control of
clinical asthma and are now available for clinical use
(Israel et al., 1996).

C. Mediator Receptors

Many inflammatory mediator receptors have now
been cloned. The receptor for platelet-activating factor
(PAF) was the first inflammatory mediator receptor to
be cloned (Honda et al., 1991), and many inflammatory
mediator receptors have been sequenced since then. The
receptors for many inflammatory mediators have the
typical seven-transmembrane domain structure that is
expected for G protein-coupled receptors. However, re-
ceptors for cytokines and growth factors have markedly
different structures, and usually two or more subunits
are involved (Kishimoto et al., 1994). Receptor cloning
has yielded a much better understanding of receptor
function, because the receptors can be expressed in cell
lines, allowing investigation of the “pure” pharmacolog-
ical features of the receptor and enabling screening for
drugs that interact with the receptor. This has been
important in elucidating the signal transduction path-
ways involved in receptor function. Many signal trans-
duction pathways have now been identified. For noncy-
tokine mediators, inflammatory receptors are often
coupled, through G proteins (Gq and Gi), to phosphoino-
sitide (PI) hydrolysis, but it is increasingly recognized
that other pathways may also be activated, including the
complex mitogen-activated protein (MAP) kinase path-
ways that are involved in more long term effects of

b Abbreviations: ACE, angiotensin-converting enzyme; AMP,
adenosine monophosphate; AP-1, activator protein-1; bFGF, basic
fibroblast growth factor; [Ca21]i, intracellular calcium ion concentra-
tion; CCR, CC chemokine receptor; cDNA, complementary deoxyri-
bonucleic acid; CGRP, calcitonin gene-related peptide; cNOS, consti-
tutive nitric oxide synthase; COX, cyclooxygenase; cys-LT, cysteinyl-
leukotriene; ECE, endothelin-converting enzyme; EGF, epidermal
growth factor; eNOS, endothelial nitric oxide synthase; ET, endothe-
lin; FGF, fibroblast growth factor; GM-CSF, granulocyte-macro-
phage colony-stimulating factor; GMP, guanosine monophosphate;
GRO, growth-related oncogene protein; HETE, hydroeicosatetrae-
noic acid; HMT, histamine N-methyltransferase; HMW, high molec-
ular weight; HPETE, hydroperoxyeicosatetraenoic acid; 5-HT, 5-hy-
droxytryptamine; ICAM, intercellular adhesion molecule; IFN,
interferon; Ig, immunoglobulin; IGF, insulin-like growth factor; IL,
interleukin; IL-1ra, interleukin-1 receptor antagonist; i-NANC, in-
hibitory nonadrenergic noncholinergic; iNOS, inducible nitric oxide
synthase; IP3, inositol-1,4,5-trisphosphate; LMW, low molecular
weight; LO, lipoxygenase; LT, leukotriene; LX, lipoxin; MAP, mito-
gen-activated protein; MCP, macrophage chemotactic peptide; MHC,
major histocompatibility complex; MIP, macrophage inflammatory
protein; MMP, matrix metalloproteinase; mRNA, messenger ribonu-
cleic acid; L-NAME, NG-L-arginine methyl ester; NANC, nonadren-
ergic noncholinergic; NEP, neutral endopeptidase; NF-kB, nuclear
factor-kB; NF-AT, nuclear factor of activated T cells; NK, neurokinin;
L-NMMA, NG-monomethyl-L-arginine; nNOS, neuronal nitric oxide
synthase; NO, nitric oxide; NOS, nitric oxide synthase; PAF, plate-
let-activating factor; PAGPC, 1-palmitoyl-2-acetoyl-sn-glyceryl-3-
phosphocholine; PDGF, platelet-derived growth factor; PG, prosta-
glandin; PI, phosphoinositide hydrolysis; PKC, protein kinase C;

PPT, preprotachykinin; RANTES, regulated on activation, normal T
cell-expressed, and secreted protein; ROS, reactive oxygen species;
SCF, stem cell factor; SOD, superoxide dismutase; SP, substance P;
TGF, transforming growth factor; Th, T helper; TNF, tumor necrosis
factor; TRAF, tumor necrosis factor receptor-associated factor; Tx,
thromboxane; VCAM, vascular cell adhesion molecule; VIP, vasoac-
tive intestinal polypeptide.

TABLE 1
Effects of inflammatory mediators implicated in asthma

Mediator Broncho-
constriction

Airway
secretion

Plasma
exudation Neural effects Chemotaxis AHRa

Histamine 11 1 1 1 1 2
Serotonin 2 ? 1 1 2 2
Adenosine (1) ? (1) 1 6 2
PGD2 and PGF2a 11 1 ? 1 ? 1
PGE2 2 1 2 1 1 2
Tx 11 ? 1 1 6 1
LTB4 2 2 6 2 111 6
LTC4, LTD4 and LTE4 111 11 11 6 1 6
PAF 11 1 11 1 111 11
Bradykinin 1 1 11 2 2
SP 11 11 11 111 6 2
NKA 11 1 1 2 2
CGRP 6 1 (1) ? 1 2
ET 111 1 1 1 ? ?
Complement fragments 1 1 1 ? 11 2
ROS (1) 1 1 2 ? 2
NO 2 1 (1) 1 1 2
Tryptase (1) 11 1 2 1 1

a AHR, airway hyperresponsiveness; 2, no effect; 6, possible effect; 1, small effect; 11, moderate effect; 111, strong effect; ?, uncertain or undetermined effect;
parentheses indicate indirect effects.

518 BARNES ET AL.

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


mediators. Cytokine receptors signal through complex
pathways, including MAP kinases and other protein ki-
nases, that result in the activation of transcription fac-
tors. Transcription factors regulate the expression of
many genes, including inflammatory genes themselves.

The cloning of receptors has made it possible to study
the factors regulating their expression. This may be of
particular relevance in asthma, because the inflamma-
tory state may alter the gene expression, translation, or
function of receptors, thus affecting responsiveness to
different mediators.

D. Mediator Effects

Inflammatory mediators produce many effects in the
airways, including bronchoconstriction, plasma exuda-
tion, mucus secretion, neural effects, and attraction and
activation of inflammatory cells. Although the acute ef-
fects of mediators have been emphasized, there is in-
creasing recognition that mediators may result in long-
lasting structural changes in the airways that are also
mediated by the release of inflammatory mediators.
These changes may include fibrosis resulting from the
deposition of collagen, which is seen predominantly un-
der the epithelium even in patients with mild asthma.
The airway smooth muscle layer is also thickened in
asthma, and this is likely the result of increases in the
number of smooth muscle cells (hyperplasia) and in-
creases in their size (hypertrophy) (Knox, 1994). There
may be proliferation of airway vessels (angiogenesis)
(Kuwano et al., 1993) and of mucus-secreting cells.
There may also be changes in the innervation of the
airways.

E. Involvement of Mediators in Asthma

There are several lines of evidence that may implicate
a mediator in asthma. Firstly, it may mimic features of
clinical asthma. Secondly, the mediator may be pro-
duced in asthmatic patients. Thus, mediators or their
metabolites may be detected in plasma (e.g., histamine),
urine (e.g., LTE4), or, more likely, the airways (in biop-
sies, bronchoalveolar lavage fluid, induced sputum, or
exhaled air). However, this does not necessarily mean
that the mediator plays any important role in asthma.
The best evidence for the involvement of a mediator in
asthma is obtained with the use of specific blockers.
These may be drugs that block the synthesis of the
mediators (e.g., 5-LO inhibitors) or drugs that block
their receptors (e.g., antihistamines). Use of new and
selective mediator blockers has enormously increased
our understanding of the individual mediators and also
of asthma itself. Although it is unlikely that blockade of
a single mediator will be entirely effective in controlling
asthma, there is accumulating evidence that some me-
diators are more important than others. PAF receptor
antagonists are of no obvious clinical benefit in asthma
(Kuitert et al., 1993), but cysteinyl-LT (cys-LT) receptor

antagonists have considerable clinical effects (O’Byrne
et al., 1997).

The role of a mediator in asthma may be difficult to
assess when the mediator has a long term effect on
airway function. It is easy to measure the effect of a
mediator on airway smooth muscle, but it is more diffi-
cult to determine its effect on airway microvascular
leakage and mucus secretion. It may be even more dif-
ficult to determine the role of a mediator on chronic
inflammatory effects, such as airway smooth muscle
proliferation and fibrosis, that may develop over many
years. However, prevention of the long term conse-
quences of asthmatic inflammation, such as irreversible
airway narrowing, may be an important goal of asthma
therapy, and it is necessary to devise methods to inves-
tigate how mediators may affect these long term conse-
quences of asthma.

Asthma has a characteristic clinical pattern, and the
histological appearance of asthma is very similar among
patients, even when there are differences in asthma
severity or in whether or not the asthma is allergic.
However, it is likely that there are differing mechanisms
of asthma among patients and that different patterns of
inflammatory mediators are involved. This suggests
that mediator antagonists would have different effects
in different patients. This has already been observed in
the use of anti-LTs, because some patients appear to
have much better therapeutic responses than others.
This might be related to polymorphisms of the 5-LO
gene (In et al., 1997), but there might be differences that
relate to the type of asthma. Patients with aspirin-
sensitive asthma are particularly helped by anti-LTs,
consistent with a critical role for cys-LTs in this type of
asthma. As more mediator antagonists become avail-
able, other patients who respond well to a particular
antagonist may be identified and the heterogeneity of
asthma may be revealed.

F. Chronic Inflammation

Although in the past much attention has been paid to
acute inflammatory responses (such as bronchoconstric-
tion, plasma exudation, and mucus hypersecretion) in
asthma, it is being increasingly recognized that chronic
inflammation is an important aspect of asthma (Reding-
ton and Howarth, 1997). This chronic inflammation may
result in structural changes in the airway, such as fibro-
sis (particularly under the epithelium), increased thick-
ness of the airway smooth muscle layer (hyperplasia and
hypertrophy), hyperplasia of mucus-secreting cells, and
new vessel formation (angiogenesis). Some of these
changes may be irreversible, leading to fixed narrowing
of the airways. These chronic inflammatory changes are
mediated by the secretion of distinct mediators, al-
though their role in asthma is still far from certain.
These factors include cytokines and growth factors. Cy-
tokines are a large group of protein mediators that play
a critical role in determining the nature of the inflam-
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matory response and its persistence. They play a key
role in the pathophysiological changes in chronic asthma
and are being increasingly recognized as important tar-
gets for treatment (Robinson et al., 1993c; Barnes,
1994a; Drazen et al., 1996).

G. Transcription Factors

Transcription factors are DNA-binding proteins that
regulate the expression of inflammatory genes, includ-
ing enzymes involved in the synthesis of inflammatory
mediators and protein and peptide mediators. Tran-
scription factors therefore play a critical role in the
expression of inflammatory proteins in asthma, because
many of these proteins are regulated at a transcriptional
level (Barnes and Karin, 1997; Barnes and Adcock,
1998). These transcription factors include nuclear fac-
tor-kB (NF-kB) and activator protein-1 (AP-1), which are
universal transcription factors that are involved in the
expression of multiple inflammatory and immune genes
and may play a key role in amplifying the inflammatory
response. Other transcription factors, such as nuclear
factor of activated T cells (NF-AT), are more specific and
regulate the expression of a restricted set of genes in
particular types of cell; NF-AT regulates the expression
of interleukin (IL)-2 and IL-5 in T lymphocytes.

H. Mediator Interactions

Many mediators are released in asthma, and it is clear
that these mediators interact with each other in some
way. Mediators may act synergistically to enhance each
other’s effects, or one mediator may modify the release
or action of another mediator. Little is currently under-
stood regarding these mediator interactions, however.
The development of mediator antagonists will greatly
facilitate elucidation of such interactions.

II. Amine Mediators

A. Histamine

Histamine [2-(4-imidazole)ethylamine] was the first
mediator implicated in the pathophysiological changes
of asthma, when it was found to mimic several features
of the disease. Although histamine has been studied
extensively as a mediator of asthma, there are several
new findings regarding the role of this mediator in
asthma.

1. Synthesis and metabolism. Histamine is synthe-
sized and released by mast cells in the airway wall and
by circulating and infiltrating basophils. Although air-
way mast cells are likely to be the major cellular source
of histamine in asthma, there is increasing evidence that
basophils may be recruited to asthmatic airways and
may release histamine in response to cytokine histamine-
releasing factors (Schroeder and MacGlashan, 1997).

Histamine is formed by decarboxylation of the amino
acid histidine by the enzyme L-histidine decarboxylase

(EC 4.1.1.22), which is dependent on the cofactor pyri-
doxal-59-phosphate. Histamine is stored in granules
within mast cells and basophils, where it is closely as-
sociated with the anionic proteoglycans heparin (in mast
cells) and chondroitin-4-sulfate (in basophils). Hista-
mine may be released when these cells degranulate in
response to various immunological [immunoglobulin
(Ig)E or cytokines] or nonimmunological (compound 48/
80, calcium ionophore, mastoparin, substance P (SP),
opioids, or hypo-osmolar solutions) stimuli.

Only a small amount of the histamine released (2 to
3%) is excreted unchanged. The remainder is metabo-
lized, via two major pathways, and excreted in the urine.
The majority (50 to 80%) is metabolized by histamine
N-methyltransferase (HMT) (EC 2.1.1.8) to N-methyl-
histamine, which is itself metabolized by monoamine
oxidase to N-methylimidazole acetic acid, the major uri-
nary metabolite. The remaining histamine is metabo-
lized by diamine oxidase (EC 1.4.3.6) to imidazole acetic
acid, which is excreted in the urine. HMT appears to be
the most important enzyme contributing to the degra-
dation of histamine in the airways, because blockers of
HMT (such as SKF 91488) increase the bronchocon-
stricting action of histamine in vitro and in vivo,
whereas diamine oxidase inhibition is without effect
(Sekizawa et al., 1993). HMT is expressed in airway
epithelial cells and may therefore be responsible for the
local metabolism of histamine released from airway
mast cells. Mechanical removal of airway epithelium
enhances the bronchoconstriction response to histamine
in vitro (Barnes et al., 1985; Flavahan et al., 1985;
Knight et al., 1990); this might be the result, in part, of
loss of the metabolizing enzyme. Furthermore, experi-
mental viral infections result in reduced epithelial HMT
activity in association with increased responsiveness to
inhaled histamine (Nakazawa et al., 1994).

2. Receptors. Histamine has multiple effects on airway
function that are mediated by specific surface receptors
on target cells (Barnes, 1991). Three types of histamine
receptors have now been recognized pharmacologically
(Hill, 1990). Histamine receptors were first differenti-
ated into H1 and H2 receptors by Ash and Schild in 1966,
when it was found that some responses to histamine
were blocked by low doses of mepyramine (pyrilamine),
whereas others were insensitive. This classification was
supported by the development of H2 receptor-selective
antagonists, such as cimetidine and ranitidine. Both H1
and H2 receptors have been cloned. Both have the seven-
transmembrane domain motif typical of G protein-
coupled receptors. A third histamine receptor subtype,
termed H3, has been described more recently; this recep-
tor acts as an inhibitory autoreceptor in the central
nervous system (Schultz et al., 1991).

a. H1 RECEPTORS. H1 receptors have been cloned from
cows (Yamashita et al., 1991), rats (Fujimoto et al.,
1993), guinea pigs (Horio et al., 1993), and humans (De
Backer et al., 1993; Fukui et al., 1994). The published
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sequences suggest that there are surprisingly large dif-
ferences among species, consistent with the sometimes
marked differences in the responses to histamine among
species, with lower activities in rats and mice, compared
with guinea pigs and humans (Hill, 1990). H1 receptors
mediate most of the effects of histamine that are rele-
vant to asthma. H1 receptors have been demonstrated in
animal and human lung by direct receptor binding tech-
niques (Carswell and Nahorski, 1982; Casale et al.,
1985). [3H]Mepyramine binding to human lung homog-
enates is complex, with at least three sites with different
affinities (Casale et al., 1985). There have been no auto-
radiographic mapping studies, because of the unsuit-
ability of currently available radioligands. Antigen-in-
duced, IgE-dependent anaphylaxis in chopped human
lung causes increases in both cyclic adenosine mono-
phosphate (AMP) and cyclic guanosine monophosphate
(GMP) levels. The rise in cyclic GMP levels is blocked by
an H1 receptor antagonist, suggesting that this response
is linked to H1 receptor activation (Platshon and Ka-
liner, 1978). The effect of histamine on cyclic GMP levels
in guinea pig lung is dependent on L-arginine, suggest-
ing that H1 receptor stimulation increases the release of
nitric oxide (NO), which subsequently increases cyclic
GMP levels by activating soluble guanylyl cyclase (Leurs
et al., 1991). The bronchoconstricting effect of histamine
is enhanced by NO synthase (NOS) inhibitors, suggest-
ing that the release of NO stimulated by histamine
partially counteracts the direct bronchoconstricting ac-
tion of airway smooth muscle H1 receptors (Nijkamp et
al., 1993). This may not occur in human airways, be-
cause there is no increase in the bronchoconstriction
response to histamine after inhalation of NOS inhibitors
(Yates et al., 1995) and no increase in the levels of
exhaled NO (Kharitonov et al., 1995).

Northern analysis has demonstrated that there is a
high level of expression of H1 receptor messenger ribo-
nucleic acid (mRNA) in lung (Yamashita et al., 1991;
Horio et al., 1993; Fujimoto et al., 1993; De Backer et al.,
1993; Fukui et al., 1994). H1 receptor mRNA is strongly
expressed in bovine tracheal smooth muscle, and mRNA
expression is inhibited by protein kinase C (PKC) acti-
vation (Pype et al., 1998). Because histamine stimulates
PKC via PI hydrolysis through H1 receptor activation,
this might be a mechanism of down-regulation of H1
receptors. However, exposure of bovine tracheal smooth
muscle to histamine is not associated with any effect on
H1 receptor mRNA levels, and regulation appears to be
the result of phosphorylation of the receptor by an un-
identified G protein-related kinase (Pype et al., 1998).

H1 receptors are coupled to PI turnover, with release
of intracellular calcium ions. Thus, transfected H1 re-
ceptors are coupled to a rise in the intracellular calcium
ion concentration ([Ca21]i) (Irfdale et al., 1993). In air-
way smooth muscle cells, the contractile response to
histamine is partly reduced by removal of extracellular
Ca21 and by treatment with calcium channel blockers

(Cheng and Townley, 1983; Drazen et al., 1983). This
suggests that the bronchoconstriction response to hista-
mine is partly mediated by opening of voltage-dependent
calcium channels. However, most of the contractile re-
sponse is unaffected by extracellular Ca21. Histamine
stimulates a transient elevation of [Ca21]i (measured as
fura-2 fluorescence in cultured canine tracheal smooth
muscle cells) that is largely independent of extracellular
Ca21 (Kotlikoff et al., 1987; Kotlikoff, 1988; Takuwa et
al., 1988).

b. H2 RECEPTORS. H2 receptors have been cloned from
dogs (Gantz et al., 1991b) and humans (Gantz et al.,
1991a). Although H2 receptors are present in the air-
ways, their clinical relevance is unclear, because H2
receptor antagonists have few measurable effects on
airway function. H2 receptors have been detected in lung
using [3H]tiotidine, although their cellular localization
has not yet been reported (Foreman et al., 1985). Hista-
mine stimulates an increase in cyclic AMP levels in lung
fragments that is blocked by H2 receptor antagonists,
indicating that H2 receptors are positively coupled to
adenylyl cyclase in lung (Platshon and Kaliner, 1978).

c. H3 RECEPTORS. Although H3 receptors have also
been identified in lung by binding studies (Arrang et al.,
1987), functional studies are limited. The H3 receptor
has not yet been cloned.

3. Effects on airways.
a. AIRWAY SMOOTH MUSCLE. Histamine stimulates PI

hydrolysis in airway smooth muscle (Grandordy and
Barnes, 1987; Hall and Hill, 1988; Daykin et al., 1993),
and there is a close association of receptor occupancy, PI
hydrolysis, and the contractile response, indicating that
there are few or no “spare” receptors (Grandordy and
Barnes, 1987). Histamine also increases the concentra-
tion of inositol-1,4,5-trisphosphate (IP3) in airway
smooth muscle, although the magnitude of the increase
is less than with cholinergic agonists, which may reflect
lower receptor density (Chilvers et al., 1989). In cultured
human airway smooth muscle cells, histamine increases
[Ca21]i via an increase in IP3 levels (Hardy et al., 1996).

Bronchoconstriction was one of the first recognized
effects of histamine. Inhaled or intravenously adminis-
tered histamine causes bronchoconstriction, which is in-
hibited by H1 receptor antagonists (such as chlorphe-
niramine, terfenadine, or astemizole). Histamine
contracts both central and peripheral airways in vitro,
with a more potent effect on peripheral airways. Asth-
matic patients are more sensitive to the bronchocon-
stricting effects of inhaled and intravenously adminis-
tered histamine than are normal individuals; this is a
manifestation of airway hyperresponsiveness. However,
there is little evidence for increased contractile respon-
siveness to histamine in asthmatic airways in vitro
(Whicker et al., 1988), suggesting that the hyperrespon-
siveness to histamine in asthma is not the result of any
change in histamine receptors in airway smooth muscle.
In human airway smooth muscle in vitro, there is a
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certain degree of basal tone. This is reduced by H1 re-
ceptor antagonists, suggesting that basal release of his-
tamine (presumably derived from mast cells) contributes
to this tone (Ellis and Undem, 1994). This is consistent
with the bronchodilating effects reported for intrave-
nously administered chlorpheniramine and orally ad-
ministered terfenadine in asthmatic patients but not in
normal individuals (Eiser et al., 1981; Cookson, 1987).

Histamine also induces proliferation of cultured air-
way smooth muscle, and this is associated with in-
creased expression of c-fos (Panettieri et al., 1990). It is
not certain whether this effect of histamine is mediated
by the H1 receptor but this is likely, because H1 receptor
stimulation may activate PKC and thereby c-fos expres-
sion.

H2 receptors that mediate bronchodilation have been
identified in some species, including cats, rats, rabbits,
sheep, and horses (Chand and Eyre, 1975). In some
species, such as rabbits, the H2 receptor-mediated re-
sponse predominates, because histamine itself is a bron-
chodilator. Histamine increases cyclic AMP content in
guinea pig tracheal smooth muscle cells, and this is
blocked by an H2 receptor antagonist (Florio et al.,
1992). Interestingly, dexamethasone enhances this re-
sponse to histamine, without affecting the affinity or
binding of H2 receptors. Human peripheral lung strips
show a relaxation response to histamine via H2 recep-
tors (Vincenc et al., 1984), although this is more likely to
reflect a relaxation effect on pulmonary vessels, rather
than peripheral airways. H2-selective blockers, such as
cimetidine and ranitidine, do not cause bronchoconstric-
tion in normal or asthmatic individuals and do not in-
crease the bronchoconstriction response to inhaled his-
tamine (Nogrady and Bevan, 1981; Thomson and Kerr,
1980; Braude et al., 1994). Similarly, the H2 receptor
agonist impromidine has no effect on normal or asth-
matic airways (White et al., 1987).

A defect in H2 receptor-mediated bronchodilation has
been reported in sheep with allergic airway inflamma-
tion (Ahmed et al., 1983), and there is evidence that H2
receptor-mediated gastric secretion may be impaired in
patients with asthma (Gonzalez and Ahmed, 1986). This
has suggested that there may be a defect in H2 receptor
function in asthmatic airways (Chand, 1980), although
there is no direct evidence that this is the case.

Histamine-induced bronchoconstriction shows desen-
sitization in some species, such as guinea pigs. This
appears to be the result of release of prostaglandin
(PG)E2 and is blocked by indomethacin (Orehek et al.,
1975; Haye-Legrand et al., 1986). Similar desensitiza-
tion to inhaled histamine has been reported in normal
subjects and in patients with mild asthma (Manning and
O’Byrne, 1988). This loss of effect is blocked by indo-
methacin and appears to be mediated by H2 receptors
(Jackson et al., 1981). Histamine desensitization in hu-
man airways in vitro is mediated by H2 receptors and is
blocked by indomethacin treatment and by epithelium

removal (Knight et al., 1992). This may contribute to the
enhanced bronchoconstricting effect of histamine in
vitro after epithelium removal (Knight et al., 1990). His-
tamine may activate H2 receptors on epithelial cells to
release PGE2, thus counteracting the bronchoconstrict-
ing action of histamine on airway smooth muscle (medi-
ated by H1 receptors).

The H3 receptor agonist (R)-a-methylhistamine has
no effect on airway smooth muscle tone in vitro or in vivo
(Ichinose et al., 1989; Ichinose and Barnes, 1989a,b), and
the H3 receptor antagonist thioperamide does not influ-
ence either basal activity or the bronchoconstriction re-
sponse to histamine, suggesting that H3 receptors are
not functionally expressed in airway smooth muscle.
Furthermore, inhaled (R)-a-methylhistamine has no ef-
fect on airway function in asthmatic patients (O’Connor
et al., 1993).

b. VESSELS. In human skin, histamine causes a vaso-
dilating response (flare) that is mediated by H1 recep-
tors. Human bronchial vessels are relaxed by low con-
centrations of histamine in vitro but are constricted by
high concentrations (Liu et al., 1990). Both effects are
blocked by mepyramine, indicating that H1 receptors are
involved. It is likely that the vasodilating response is the
result of the release of NO from endothelial cells and
that the vasoconstricting effect is the result of the direct
action of histamine on vascular smooth muscle H1 re-
ceptors. Histamine appears to increase airway blood
flow in vivo, but there are doubts regarding whether this
is mediated by H1 or H2 receptors because, even in the
same species, different effects of H1 and H2 blockers have
been reported (Long et al., 1985; Webber et al., 1988).

Histamine also causes plasma extravasation from
postcapillary venules in the bronchial circulation, and
this effect is blocked by H1 receptor antagonists. Mea-
surement of plasma exudation in human airways is dif-
ficult, but it is likely that histamine induces plasma
exudation, as in rodent airways. In support of this is the
finding that histamine, when injected intradermally,
causes a wheal that is blocked by H1 but not H2 antag-
onists (Summers et al., 1981). Whether histamine con-
tributes to the plasma exudation seen after allergen
challenge in humans has not been determined, but in
guinea pigs antihistamines had marked inhibitory ef-
fects on allergen-induced plasma extravasation in prox-
imal airways, whereas a LT inhibitor had a greater
effect in more peripheral airways (Evans et al., 1989).
Although histamine causes plasma extravasation in the
airways, this makes relatively little contribution to the
airway narrowing induced by histamine (Tokuyama et
al., 1991).

Although vasodilating H2 receptors have been clearly
demonstrated in human pulmonary vessels (Barnes and
Liu, 1995), their role in the bronchial circulation is less
well defined, and there appear to be species differences.
In sheep and dogs, histamine induces an increase in
bronchial blood flow that is mediated by H2 receptors
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(Long et al., 1985; Parsons et al., 1992b). In human
bronchial vessels in vitro, the vasodilating action of his-
tamine is not blocked by H2 antagonists (Liu et al.,
1990). Lung permeability (measured by the clearance of
99mTc-labeled diethylenetriaminepentaacetate) is in-
creased by inhaled histamine, and this is blocked by the
H2 receptor antagonist ranitidine but not by the H1
receptor antagonist terfenadine (Braude et al., 1994). It
is uncertain whether diethylenetriaminepentaacetate
clearance measures alveolar or airway permeability or
pulmonary blood flow.

c. SECRETIONS. Histamine stimulates the secretion of
mucus glycoproteins in human airways in vitro, but this
is not blocked by H1 antagonists and the H1 agonists
2-methylhistamine and 2-pyridylethylamine are with-
out effect (Shelhamer et al., 1980). It is difficult to study
the production of mucus from the lower respiratory tract
in humans in vivo, but studies have been performed on
the more accessible nasal secretions. Histamine induces
a rise in secretory IgA and lactoferrin, which implies
active glandular secretion, and this is blocked by chlor-
pheniramine, suggesting that H1 receptors are involved
(Raphael et al., 1989).

Histamine also increases chloride ion transport in ca-
nine tracheal epithelial cells, and this response is
blocked by H1 antagonists (Marin et al., 1977). In a
bronchial epithelial cell line (BEAS-2B), histamine in-
creases [Ca21]i and releases a variety of mediators, in-
cluding interleukin (IL)-6 and fibronectin, but not lipid
mediators (Noah et al., 1991). These effects are probably
mediated by H1 receptors. Histamine also increases the
expression of intercellular adhesion molecule-1
(ICAM-1) and the surface marker HLA-DR in primary
cultured human bronchial epithelial cells (Vignola et al.,
1993). This effect is largely mediated by H1 receptors,
but H2 antagonists at high concentrations also have an
inhibitory effect. Interestingly, cycloheximide blocked
these effects of histamine, suggesting that histamine
induced the synthesis of a protein critical to these re-
sponses.

The increase in mucus glycoprotein secretion in hu-
man airways in vitro in response to histamine is blocked
by cimetidine and mimicked by the H2 agonist dimaprit,
confirming that H2 receptors are involved in this re-
sponse (Shelhamer et al., 1980). However, the effect of
histamine is very weak, compared with that of other
secretagogues such as muscarinic agonists, suggesting
that this effect of histamine is unlikely to be of major
importance. Histamine is reported to directly activate
rodent airway goblet cells via H2 receptors, but whether
this is the case in human airways is not yet known
(Tamaoki et al., 1997).

d. NERVES. In many species, the bronchoconstricting
effect of histamine is partially mediated by a vagal cho-
linergic reflex and may be modulated by muscarinic
receptor antagonists. In dogs, histamine increases the
discharge of “irritant” receptors in vivo (Ad-fibers), and

these effects are abolished by H1 antagonists. However,
in vitro measurements of single afferent fibers in guinea
pig trachea show no evidence for activation of either Ad-
or C-fibers by histamine (Fox et al., 1993). This suggests
that the in vivo effect of histamine on airway sensory
nerves may be secondary to some other effect, such as
bronchoconstriction. In guinea pig lung, histamine ap-
pears to release neuropeptides, such as SP and calcito-
nin gene-related peptide (CGRP), from capsaicin-sensi-
tive sensory nerves via H1 receptors (Saria et al., 1988).

Histamine also augments vagus nerve-induced bron-
choconstriction in dogs, without increasing the response
to acetylcholine (Loring et al., 1978; Kikuchi et al., 1984).
The effect of histamine on cholinergic nerves is medi-
ated, in part, by stimulation of acetylcholine release
from postganglionic nerve terminals, because the en-
hancing effect of histamine in dogs is seen even after
vagus nerve sectioning, which abolishes all reflex effects
(Shore et al., 1983). This suggests that histamine acts on
prejunctional H1 receptors to enhance acetylcholine re-
lease (Barnes, 1992a). In guinea pigs, there is evidence
for direct activation of parasympathetic neurons by his-
tamine, acting via H1 receptors (Myers and Undem,
1995). The role of cholinergic reflexes in the bronchocon-
striction response to histamine in human airways is less
certain. A significant reduction of the bronchoconstric-
tion response to histamine after anticholinergic drug
treatment was reported in some studies (Eiser and Guz,
1982), whereas others found no effect (Casterline et al.,
1976). This may be related to the dose of histamine
administered, because anticholinergic agents may block
the bronchoconstricting effect of small, but not large,
doses of inhaled histamine.

(R)-a-Methylhistamine has an inhibitory effect on va-
gus nerve-induced contraction of an innervated guinea
pig tracheal tube preparation but has no effect on ace-
tylcholine-induced contraction, indicating that it may
modulate cholinergic neurotransmission (Ichinose et al.,
1989). The inhibitory effect is greater for vagus nerve
stimulation (preganglionic) than for electrical field stim-
ulation (postganglionic), indicating that modulation oc-
curs both at parasympathetic ganglia and at postgangli-
onic nerve endings (Ichinose et al., 1989). These effects
are blocked by thioperamide but not by mepyramine or
cimetidine, indicating that H3 receptors are involved
and presumably localized to parasympathetic ganglionic
neurons and postganglionic cholinergic nerve terminals.
Histamine, in the presence of H1 and H2 receptor antag-
onists, has similar inhibitory actions and has no effect at
low concentrations. In human bronchi in vitro, an inhib-
itory effect of (R)-a-methylhistamine on electrical field
stimulation-induced contraction, but not acetylcholine-
induced contraction, is seen, indicating a similar inhib-
itory effect on postganglionic cholinergic nerves, which
is inhibited by thioperamide (Ichinose and Barnes,
1989a). This demonstrates the presence of H3 receptors
on cholinergic nerves in human airways.
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Histamine may also exert prejunctional effects on the
release of neuropeptides from airway sensory nerves, via
H3 receptors. (R)-a-Methylhistamine has an inhibitory
effect on vagus nerve-induced bronchoconstriction in
guinea pig airways but has no effect on the equivalent
degree of bronchoconstriction induced by tachykinins,
indicating a modulatory effect on the release of tachyki-
nins from sensory nerves. This effect is blocked by thio-
peramide, indicating that H3 receptors are involved
(Ichinose and Barnes, 1989b). Similarly, (R)-a-methyl-
histamine inhibits vagus nerve-induced plasma extrav-
asation, without affecting leakage induced by SP, indi-
cating a modulatory effect of H3 receptors on neurogenic
inflammation (Ichinose et al., 1990b). The functional
relevance of the inhibition of H3 receptors on airway
nerves may be that this acts as a protective inhibitory
feedback mechanism (Barnes and Ichinose, 1989). There
is a close relationship between airway mast cells and
nerves. If mast cells exhibit a basal release of histamine
in asthma, the low concentrations of histamine may act
on H3 receptors on cholinergic nerve terminals and gan-
glia to inhibit neurotransmission and thus prevent acti-
vation of bronchoconstricting reflexes. Similarly, hista-
mine inhibits the release of neuropeptides from sensory
nerves in airways and thus prevent neurogenic leak.
When mast cells are degranulated by allergen, there is a
massive release of histamine, which overwhelms the H3
receptor system and predominantly activates H1 recep-
tors on airway smooth muscle and endothelial cells.

e. INFLAMMATORY CELLS. Histamine may also have ef-
fects on inflammatory cells, and it has been found to
influence the release of cytokines and inflammatory me-
diators from a variety of inflammatory and immune cells
(Falvs and Merety, 1992). The relevance of this is un-
certain, because H1 antagonists do not appear to have
significant anti-inflammatory effects. Histamine is a se-
lective chemoattractant for eosinophils (Clark et al.,
1975) and activates human eosinophils, as reflected by a
rise in [Ca21]i (Raible et al., 1992). The nature of the
receptor on eosinophils is not clear; the receptor does not
fit into the H1/H2/H3 receptor classification system
(Raible et al., 1994). Histamine also activates human
alveolar macrophages to release b-glucuronidase, and
this effect is mediated by H1 receptors (Cluzel et al.,
1990). Histamine stimulates suppressor T lymphocytes
via H2 receptors, and there is some evidence that this
function may be depressed in atopic individuals (Beer et
al., 1982). IgE-mediated release of histamine from hu-
man basophils is inhibited by histamine itself acting via
H2 receptors, although it is possible that H3 receptors
are involved, because inhibition is seen with impromi-
dine, which is now recognized to have H3 receptor-block-
ing effects. Therefore, H2 receptor antagonists may the-
oretically increase histamine release after allergen
challenge, although H2 receptors have not been demon-
strated in mast cells of human lung. Furthermore, a
decrease, rather than an increase, in responsiveness to

inhaled allergen after chronic treatment with cimetidine
has been reported (Bergstrand et al., 1985).

H3 agonists inhibit the release and synthesis of hista-
mine in central neurons (Schultz et al., 1991). It is
possible that H3 receptors may similarly inhibit the
synthesis and release of histamine in lung mast cells.
Allergen-induced bronchoconstriction in sensitized
guinea pigs is enhanced by thioperamide but is unaf-
fected by cimetidine, whereas it is almost completely
abolished by mepyramine (Ichinose and Barnes, 1990b).
Because thioperamide has no effect on histamine-in-
duced bronchoconstriction, this strongly suggests that
histamine released from pulmonary mast cells by aller-
gen challenge normally inhibits further release via H3
receptors on mast cells (autoinhibition). Histamine in-
hibits the release of tumor necrosis factor (TNF)-a from
rodent mast cells, and this appears to be mediated by H2
and H3 receptors (Bissonnette, 1996). When these recep-
tors are inhibited, this results in enhanced histamine
release. Whether H3 receptors are important in regulat-
ing the synthesis of histamine in these cells is not yet
known, and it is also uncertain whether H3 receptors are
expressed in human mast cells.

4. Role in asthma.
a. RELEASE. Measurement of histamine in the circula-

tion is complicated by the spontaneous release from
basophils, and measurement of stable metabolites in the
urine may not reflect release from mast cells in the
airways. Several previous studies demonstrated eleva-
tions of plasma histamine concentrations in patients
with asthma, at rest, after exercise, at night, and after
allergen challenge, but these studies are difficult to in-
terpret because of the likelihood of contamination from
basophil release in the collected blood samples (Ind et
al., 1983). It is possible that basophils from patients
with asthma may be more “leaky” and that this may
contribute to the higher concentrations measured in
asthmatic patients. Studies of histamine infusions in
normal volunteers have demonstrated that doses of his-
tamine that yield the plasma concentrations reported in
patients with asthma have marked cardiovascular ef-
fects, indicating that the higher levels seen in the blood
of asthmatic patients are likely to be generated in vitro
during storage and preparation of the plasma samples.
The histamine released from the airways may increase
plasma concentrations, but this may be overwhelmed by
the contribution from circulating basophils. Sampling
closer to the site of histamine release may overcome
these problems. Venous sampling in the arm shows an
increase in plasma histamine concentrations after mast
cell degranulation in the skin of the arm, induced by SP
(Barnes et al., 1986), but such sampling is not feasible in
the airways. Measurement of histamine in bronchoal-
veolar lavage fluid is likely to provide a much more
direct measurement of airway histamine release. There
is evidence that histamine concentrations are elevated
in bronchoalveolar lavage fluid of asthmatic patients,
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both at rest and after allergen challenge (Liu et al., 1991;
Wenzel et al., 1988). The source of histamine is pre-
sumed to be mucosal mast cells, and the contribution of
infiltrating basophils is unclear.

b. EFFECTS OF INHIBITORS. Histamine mediates most of
its effects on airway function via H1 receptors, suggest-
ing that H1 antagonists may have therapeutic effects in
airway disease. Nonsedating potent H1 receptor antag-
onists, such as terfenadine, loratidine, and astemizole,
may be given in large doses but, although these antihis-
tamines have useful clinical effects in allergic rhinitis,
they are far from effective for asthmatic patients, as
demonstrated in a recent meta-analysis of clinical trials
(Van Ganse et al., 1997). The effects of antihistamines,
even when taken in high doses, are small and clinically
insignificant (Simmons and Simons, 1994). Terfenadine
causes approximately 50% inhibition of the immediate
response to allergen but has no effect on the late re-
sponse. Antihistamines cause a small degree of bron-
chodilation in asthmatic patients, indicating a certain
degree of histamine “tone,” presumably resulting from
the basal release of histamine from activated mast cells,
as discussed above. Chronic administration of terfena-
dine has a small clinical effect among patients with mild
allergic asthma (Taytard et al., 1987) but is far less
effective than other antiasthma therapies; therefore,
these drugs cannot be recommended for the routine
management of asthma. Some new antihistamines, such
as cetirizine and azelastine, have been shown to have
beneficial effects in asthma (Spector et al., 1995; Busse
et al., 1996), but this may be unrelated to their H1
antagonist effects (Walsh, 1994).

H2 antagonists, such as cimetidine and ranitidine,
may be contraindicated in asthma on theoretical
grounds, if H2 receptors are important in counteracting
the bronchoconstricting effect of histamine. In clinical
practice, however, there is no evidence that H2 antago-
nists have any deleterious effect in asthma.

H3 receptor agonists may have some theoretical ben-
efit in asthma, because they may modulate cholinergic
bronchoconstriction and inhibit neurogenic inflamma-
tion. Although (R)-a-methylhistamine relaxes rodent pe-
ripheral airways in vitro (Burgaud et al., 1992), it has no
effect, when given by inhalation, on airway caliber or
metabisulfite-induced bronchoconstriction in asthmatic
patients, indicating that a useful clinical effect is un-
likely (O’Connor et al., 1993).

c. CONCLUSIONS. Histamine is produced from mast
cells in asthmatic airways and exerts many effects that
are relevant to the pathophysiological mechanisms of
asthma, including bronchoconstriction, plasma exuda-
tion, and mucus secretion. There is also evidence for an
effect on the inflammatory process, particularly eosino-
phils. However, antihistamine H1 antagonists have been
disappointing in asthma therapy, and this presumably
reflects the fact that all of the actions of histamine are
mimicked by other mediators. New and more potent

antihistamines appear to have greater beneficial effects
in asthma, so that histamine may have a more impor-
tant role than previously recognized.

B. Serotonin (5-Hydroxytryptamine)

Serotonin [5-hydroxytryptamine (5-HT)] causes bron-
choconstriction in most animal species, but interest in
this mediator is minimal because it is not a constrictor of
human airways and its relevance in asthma seems
doubtful (Barnes et al., 1988).

1. Synthesis and metabolism. Serotonin is formed by
decarboxylation of tryptophan (obtained in the diet) and
is stored in secretory granules. Serotonin is present in
mast cell granules from rodents but not humans. The
major source of serotonin in humans is platelets, but
serotonin is also found in neuroendocrine cells of the
respiratory tract and has been localized to peripheral
nerves.

2. Receptors. Multiple serotonin receptors have now
been recognized, based on the development of selective
antagonists and molecular cloning (Saxena, 1995).
There are up to seven types of 5-HT receptors, each with
several subtypes. Selective antagonists have now be-
come available for clinical use, but few have been used in
investigations of human airway cells or in the treatment
of patients with asthma.

3. Effects on airways. Serotonin does not constrict
human airway smooth muscle in vitro and may even
have bronchodilating effects, although pulmonary ves-
sels are constricted as expected (Raffestin et al., 1985).
In animals, serotonin increases acetylcholine release
from airway nerves, and this has been demonstrated in
human airways (Takahashi et al., 1995). The receptor
mediating this response appears to be a 5-HT3 receptor
(Takahashi et al., 1995). In guinea pig airways, seroto-
nin inhibits nonadrenergic noncholinergic (NANC), neu-
rally induced constriction resulting from tachykinin re-
lease via a 5-HT1-like receptor localized to sensory nerve
endings (Ward et al., 1994; Dupont et al., 1996). In
humans, infused serotonin has no effect on airway func-
tion but may have an inhibitory effect on cough reflexes,
possibly mediated by receptors on airway sensory nerves
(Stone et al., 1993). Serotonin is a potent inducer of
microvascular leakage in rodent airways, but it is not
certain whether serotonin has this property in human
airways. Serotonin has a blocking effect on sodium chan-
nels in human airway epithelial cells, but the receptor
subtype involved has not been established (Graham et
al., 1992).

4. Role in asthma. Plasma serotonin levels are re-
ported to be elevated in asthma and are significantly
related to asthma severity (Lechin et al., 1996). The
source of serotonin is likely to be platelets, but the clin-
ical relevance of this observation is unclear.

In animals, serotonin constricts airways via activation
of 5-HT2 receptors on airway smooth muscle cells. The
5-HT2 receptor antagonist ketanserin has no effect on
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airway function but exerts a small inhibitory effect on
methacholine-induced bronchoconstriction in asthmatic
patients (Cazzola et al., 1990). Inhaled ketanserin has
no effect on histamine-induced bronchoconstriction but
exerts a small inhibitory effect on adenosine-induced
bronchoconstriction, indicating a possible action on mast
cells (Cazzola et al., 1992).

C. Adenosine

1. Synthesis and metabolism. Adenosine is a purine
nucleoside that is produced by dephosphorylation of 59-
AMP by the membrane-associated enzyme 59-nucleoti-
dase and is liberated intracellularly by cleavage of the
high energy bonds of adenosine triphosphate, adenosine
diphosphate, and cyclic 59-AMP. However, during hy-
poxia or even excessive cell stimulation, when the utili-
zation of energy and oxygen exceeds the supply, 59-AMP
is metabolized to adenosine (Mentzer et al., 1975). This
conversion is performed by extracellular 59-nucleoti-
dase. Adenosine release was originally demonstrated
during myocardial hypoxia (Mentzer et al., 1975), al-
though there is now evidence that all cells are capable of
producing adenosine in times of energy deficit. Adeno-
sine can be released by lung tissue in times of hypoxia,
such as after allergen-induced bronchoconstriction,
when the circulating levels of adenosine have been
shown to be 3 times the base-line concentrations (Mann
et al., 1986). Mast cells are a likely source of adenosine
in this situation, because these cells have been shown to
be capable of releasing adenosine in response to IgE
cross-linking and other stimuli for mast cell activation
(Marquardt et al., 1986).

2. Receptors. Three distinct subtypes of receptor have
been characterized to date, based on biochemical, func-
tional, and more recent cloning studies (Linden et al.,
1991; Linden, 1994). These receptors include the A1, A2a,
A2b, and A3 receptor subtypes. Interaction of adenosine
with these receptors leads to either inhibition of adeny-
lyl cyclase (A1), stimulation of adenylyl cyclase (A2a and
A2b) (Collis and Hourani, 1993), or activation of phos-
pholipase C (A3) (Ali et al., 1990). The A1 receptor is
expressed in lung tissue (Ren and Stiles, 1994) and, in
particular, A1 receptors have been identified on human
epithelial cells (McCoy et al., 1995). The classification of
adenosine receptors into A2a and A2b subtypes is based
on distinct rank orders of potency of a range of agonists
and antagonists and distinct nucleotide sequences of the
two complementary deoxyribonucleic acids (cDNAs).
A2a, A2b, and A3 receptors are expressed in several tis-
sues, including lungs, and in mast cells and fibroblasts
(Linden et al., 1993; Auchampach et al., 1997; Ciruela et
al., 1997; Shryock and Belardinelli, 1997; Fredholm,
1997).

3. Effects on airways.
a. AIRWAY SMOOTH MUSCLE. Adenosine elicits little or

no contraction of human bronchi from nonasthmatic
subjects but potently constricts asthmatic airways in

vitro (Björck et al., 1992). This constriction is blocked by
histamine and LT antagonists and is therefore likely to
be attributable to the release of mediators from mast
cells in asthmatic airways. It is likely that the broncho-
constricting effects of adenosine are indirect, resulting
from the activation of mast cell degranulation, because
adenosine causes histamine release from mast cells
(Church et al., 1986). Comparable results have been
observed in vivo, where adenosine and AMP are able to
elicit bronchoconstricting effects in atopic and asthmatic
subjects but have no effect in normal subjects (Cushley
et al., 1983). Furthermore, dipyridamole (an inhibitor
of adenosine uptake into tissues) enhances adenosine-
induced bronchospasm in asthmatic subjects (Crimi et al.,
1988), an effect that can be inhibited by theophylline (a
nonselective adenosine antagonist) (Cushley et al.,
1984). The receptor mediating the bronchoconstricting
effect of adenosine in asthma is not yet known. In rab-
bits, the A1 receptor is a likely candidate, because tra-
cheal strips from rabbits immunized with house dust
mites are more responsive to adenosine and the adeno-
sine A1-selective agonist cyclopentyladenosine than are
tracheal strips isolated from naive animals (Ali et al.,
1994a). Furthermore, immunized animals are consider-
ably more responsive to the bronchoconstricting effects
of adenosine (Thorne and Broadley, 1994) and cyclopen-
tyladenosine in vivo (Ali et al., 1994b; el Hashim et al.,
1996). No bronchoconstricting effects of the A3-selective
agonist aminophenylethyladenosine have been found in
rabbits (el Hashim et al., 1996) or guinea pigs (Hannon
et al., 1995), although studies in rats have shown that
aminophenylethyladenosine can elicit bronchoconstric-
tion (Meade et al., 1996). The histamine-releasing effect
of adenosine may involve the A2b receptor, because this
effect is sensitive to enprofylline (an A2b receptor antag-
onist) (Feoktistov and Biaggioni, 1995). Certainly, there
is clinical evidence showing that elevated levels of his-
tamine can be demonstrated in plasma after the inhala-
tion of AMP by atopic subjects (Phillips et al., 1990), and
increased levels of histamine have been detected after
the instillation of AMP directly into the airways (Polosa
et al., 1995). Furthermore, the H1 receptor antagonist
terfenadine has a protective effect against adenosine-
induced bronchoconstriction in asthmatic subjects
(Rafferty et al., 1987).

b. VESSELS. Adenosine has been shown to have a wide
range of effects in the cardiovascular system, which are
well beyond the scope of this review (Olsson and Pear-
son, 1990). However, in the context of asthma, adenosine
acting as a vasodilator can function synergistically with
several inflammatory mediators, leading to increased
vascular permeability. If adenosine release occurs in the
vicinity of degranulating mast cells, such interactions
may contribute to the edema that accompanies allergic
responses in the airway.

c. NERVES. Another possible explanation for adeno-
sine-induced bronchoconstriction is that it occurs sec-
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ondarily to the activation of a neuronal reflex. Adenosine
and related molecules have long been known to modu-
late synaptic transmission, although adenosine has been
reported not to influence cholinergic responses in human
trachea (Bai et al., 1989) or contraction of guinea pig
trachea induced by electrical field stimulation (Grund-
ström et al., 1981). Data obtained from in vivo experi-
ments are inconclusive; some investigators failed to
show any effect of the muscarinic receptor antagonist
ipratropium bromide on the airway effects of inhaled
adenosine (Mann et al., 1985), whereas other groups
observed a significant effect of atropine or ipratropium
bromide on adenosine-induced bronchoconstriction
(Crimi et al., 1992). Furthermore, it has been suggested
that AMP-induced effects in the airway may be second-
ary to the activation of sensory C-fibers (Polosa et al.,
1992b), a suggestion supported by clinical observations
showing that the airway effects induced by inhaled
adenosine or AMP can be inhibited by sodium cromogly-
cate and nedocromil sodium (drugs that can attenuate
C-fiber function). The neutral endopeptidase (NEP) in-
hibitor phosphoramidon, which should enhance tachyki-
nin-mediated effects, also has no effect on adenosine-
induced bronchoconstriction responses (Polosa et al.,
1997b).

d. INFLAMMATORY CELLS. Adenosine is a potent medi-
ator of mast cell degranulation, as described above, and
therefore may contribute to the inflammatory changes
observed in asthma. On the other hand, adenosine in-
hibits eosinophil degranulation (Yukawa et al., 1989). A3
receptors have been recently identified on human eosin-
ophils (Walker et al., 1997), and activation of these re-
ceptors by adenosine inhibits eosinophil migration
(Knight et al., 1997). Activation of A3 receptors on eosin-
ophils has also been shown to lead to an increase in
[Ca21]i (Kohno et al., 1996).

4. Role in asthma.
a. RELEASE. Increased levels of adenosine have been

found in bronchoalveolar lavage fluid obtained from
asthmatic subjects, compared with normal subjects
(Driver et al., 1993), and, as discussed above, adenosine
concentrations in plasma are higher in allergic patients
minutes after allergen provocation (Mann et al., 1986).
A3 receptor expression is increased in asthmatic lungs,
compared with lungs of normal subjects, although, be-
cause the A3 receptor is expressed predominantly in
eosinophils, this may be a reflection of eosinophilic in-
filtration (Walker et al., 1997).

b. EFFECTS OF INHIBITORS. No specific receptor antag-
onists for adenosine have been evaluated against
adenosine-induced bronchoconstriction in humans. Di-
pyridamole (an inhibitor of adenosine uptake) enhances
adenosine-induced bronchospasm in asthmatic patients
when administered intravenously or by inhalation
(Crimi et al., 1988), an effect that can be inhibited by
theophylline (an adenosine receptor antagonist) (Cush-
ley et al., 1984). Adenosine-induced bronchospasm can

also be inhibited by a variety of other drugs, including
the H1 antagonist terfenadine (Rafferty et al., 1987), the
cyclooxygenase (COX) inhibitor indomethacin (Crimi et
al., 1989), and sodium cromoglycate (Crimi et al., 1988),
although this does not provide direct evidence for the
involvement of adenosine in asthma. Because theophyl-
line has other actions (including nonselective phospho-
diesterase inhibition) that may contribute to its anti-
asthma effect, these findings cannot be taken as
evidence for a role for adenosine, and studies with more
selective adenosine antagonists are needed.

The role of endogenous adenosine in allergic responses
has not been evaluated because of the lack of suitable
drugs to test. However, the recent discovery that enpro-
fylline is a selective A2b receptor antagonist has pro-
vided a possible tool to evaluate the role of adenosine in
allergic responses (Feoktistov and Biaggioni, 1995). This
observation also raises the distinct possibility that some
of the therapeutic activity of enprofylline and other xan-
thines, such as theophylline, may in part be related to
inhibition of adenosine receptors (Pauwels and Joos,
1995). Furthermore, recent studies using an antisense
oligonucleotide against the A1 receptor showed that a
reduction in A1 receptors had a very significant effect on
allergen-induced bronchospasm and bronchial hyperre-
sponsiveness to inhaled histamine in an allergic rabbit
model (Nyce and Metzger, 1997). Such results, if con-
firmed in human studies, would suggest that the A1
receptor may play an important role in the pathogenesis
of allergic airway disease.

c. CONCLUSIONS. Adenosine is likely to play some role
in asthma, because it is produced as part of the stress
response and this may be particularly important during
exacerbations. Its effects in asthma are largely ex-
plained by an effect on sensitized mast cells, via A2b
receptors, and this appears to be specific for asthma. The
mechanism by which A2b receptors are expressed or
activated in asthma is not yet known, but there is a
strong indication that the development of a specific A2b
receptor antagonist may be useful in asthma

III. Lipid-Derived Mediators

A. Prostanoids

Prostanoids include PGs and thromboxane (Tx), which
are generated from arachidonic acid, usually by the ac-
tion of COX (PGH2 synthase).

1. Synthesis and metabolism. Prostanoids are gener-
ated from arachidonic acid by two forms of COX (Mitch-
ell et al., 1995). COX-1 is constitutive and is responsible
for basal release of prostanoids, whereas COX-2 is in-
ducible by inflammatory stimuli, such as endotoxin and
proinflammatory cytokines, and its induction is inhib-
ited by glucocorticoids. Both COX-1 and COX-2 are ex-
pressed in human lung (Demoly et al., 1997). Human
airway epithelial cells basally express COX-1, whereas
COX-2 is induced by IL-1b and TNF-a (Mitchell et al.,
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1994; Newton et al., 1997b; Asano et al., 1997) and is
enhanced by NO (Watkins et al., 1997). COX-2 is also
induced in cultured human airway smooth muscle cells
by proinflammatory cytokines and bradykinin (Belvisi et
al., 1997; Pang and Knox, 1997a,b), and the formation of
prostanoids is blocked by the selective COX-2 inhibitor
L745,337 (Saunders et al., 1998). COX-2 expression is
inhibited by dexamethasone in both epithelial cells and
smooth muscle cells. The induction of COX-2 is regu-
lated in part by NF-kB, and this may also account for the
inhibitory action of glucocorticoids (Newton et al.,
1997a). There is no difference in the profiles of prosta-
noids formed by COX-1 and COX-2. In epithelial cells
and airway smooth muscle cells, the predominant pro-
stanoids are PGE2 and 6-keto-PGF1a (metabolite of
PGI2), whereas there is relatively little formation of Tx
(Mitchell et al., 1994; Belvisi et al., 1997). Tx is formed
from the intermediate PGH2 by a distinct enzyme, Tx
synthase, which has been cloned (Ohashi et al., 1992).

Recently, a novel nonenzymatic pathway for prosta-
noid formation was described. Isoprostanes are gener-
ated by lipid peroxidation of arachidonic acid by oxida-
tive stress (Morrow and Roberts, 1996). The most
prevalent isoprostane in humans is 8-epi-PGF2a, which
is a potent constrictor of human airways in vitro (Kaw-
ikova et al., 1996). All cells in the airway have the
capacity to release prostanoids, but the profile of prosta-
noids released depends on the cell type and on the form
of cell stimulation, as discussed below.

2. Receptors. Several prostanoid receptors have now
been cloned (Ushikubi et al., 1995; Pierce et al., 1995).
Pharmacologically, prostanoid receptors are classified
according to the prostanoid that causes selective activa-
tion; PGE2 preferentially activates EP receptors, PGI2
(prostacyclin) activates IP receptors, PGF2a activates FP
receptors, PGD2 activates DP receptors, and Tx acti-
vates TP receptors (Coleman et al., 1994). Within each
receptor type there may be distinct subtypes, many of
which have been identified using selective ligands and
cloning; the EP receptor has at least four subtypes,
which are differentially expressed in different cell types.
EP1 receptors mediate activation responses and are in-
volved in hyperalgesic responses, whereas EP2 and EP4
receptors mediate smooth muscle relaxation responses
and EP3 receptors modulate neurotransmitter release.
In airway smooth muscle, several constrictor PGs
(PGD2, PGF2a, and 8-epi-PGF2a) appear to work
through activation of TP receptors (Coleman and Shel-
drick, 1989; Kawikova et al., 1996).

3. Effects on airways.
a. AIRWAY SMOOTH MUSCLE. PGE2 relaxes human air-

way smooth muscle in vitro via EP receptors (Knight et
al., 1995). The relaxation response to PGE2 in human
airways is mediated by EP2 receptors (McKenniff et al.,
1988), but in animal airways an EP1 receptor subtype is
also involved (Ndukwu et al., 1997). Inhaled PGE2
causes bronchodilation in normal subjects (Walters and

Davies, 1982) but may cause constriction in patients
with asthma because of activation of reflex cholinergic
bronchoconstriction. Inhaled PGE2 protects against ex-
ercise-, metabisulfite-, and allergen-induced broncho-
constriction in asthmatic patients, however (Melillo et
al., 1994; Pavord et al., 1992, 1993). PGI2 is less potent
than PGE2 in relaxing human airways in vitro (Tamaoki
et al., 1993) and, in contrast to PGE2, does not protect
against histamine-induced contraction (Knight et al.,
1995). Inhaled PGI2 has little effect on airway function
(Hardy et al., 1985).

In contrast, PGF2a, PGD2, 8-epi-PGF2a, and Tx cause
bronchoconstriction of human airways in vitro, and all
are antagonized by TP receptor antagonists (Coleman
and Sheldrick, 1989; Kawikova et al., 1996). Both PGF2a

and PGD2, when inhaled, cause bronchoconstriction in
asthmatic patients (Hardy et al., 1984; Fish et al., 1984).
The stable Tx analogue U46619 is a potent constrictor in
asthmatic patients, and this effect is mediated in part
via acetylcholine release (Jones et al., 1992; Saroea et
al., 1995). There is considerable evidence obtained with
animals to suggest that TxA2 is involved in airway hy-
perresponsiveness, but this is not supported by studies
in asthmatic patients (O’Byrne and Fuller, 1989).

Prostanoids also have effects on airway smooth mus-
cle proliferation. PGE2 inhibits proliferation of human
airway smooth muscle in vitro after stimulation with
fetal calf serum or growth factors (Johnson et al., 1995;
Panettieri et al., 1995); because PGE2 is the major prod-
uct of COX-2 induced by inflammatory stimuli in human
airway smooth muscle, this provides an inhibitory feed-
back mechanism (Saunders et al., 1998). Tx increases
proliferation of rabbit airway smooth muscle (Noveral
and Grunstein, 1992).

b. VESSELS. PGE2 and PGI2 are vasodilators and
therefore should theoretically increase leakage in asth-
matic airways. Tx is a potent vasoconstrictor, but it
potently increases plasma exudation in guinea pig air-
ways (Lötvall et al., 1992; Tokuyama et al., 1992). The
isoprostane 8-epi-PGF2a, like Tx, increases plasma exu-
dation in rodent airways (Okazawa et al., 1997).

c. SECRETIONS. Prostanoids stimulate airway mucus
secretion in various animal species, but few studies have
been conducted in human airways.

d. NERVES. PGE2 inhibits cholinergic nerve constric-
tion of human airways in vitro at concentrations lower
than those that cause bronchoconstriction, suggesting
that there is an inhibitory effect on acetylcholine re-
lease, presumably mediated by an EP3 receptor (Ellis
and Conanan, 1996). In animals, this has been con-
firmed by measurements of acetylcholine after neural
stimulation (Barnes, 1992a). In rat airways, PGE2 also
inhibits neurogenic inflammation, suggesting an inhib-
itory action on tachykinin release from sensory nerves
(Morikawa et al., 1992). Inhaled PGE2 causes coughing
in normal and asthmatic subjects and increases the sen-
sitivity of the cough reflex (Chaudry et al., 1989; Stone et
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al., 1992). This may be mediated by EP1 receptors. In
addition, PGE2 inhalation increases the sensation of
dyspnea (Taguchi et al., 1992). PGF2a also induces
coughing but does not appear to sensitize the cough
reflex (Stone et al., 1992). Tx increases the release of
acetylcholine from cholinergic nerves in animals in vitro
(Chung et al., 1985), and the bronchoconstriction re-
sponse to inhaled U46619 is attenuated by prior treat-
ment with a cholinergic antagonist (Saroea et al., 1995).

e. INFLAMMATORY CELLS. Prostanoids have effects on
the release of inflammatory mediators from inflamma-
tory cells. This has been most carefully studied with
PGE2, which inhibits the release of mediators from mast
cells, monocytes, neutrophils, and eosinophils (Giem-
bycz et al., 1990; Peters et al., 1982; Talpain et al., 1995;
Meja et al., 1997). The EP receptors involved are prob-
ably EP2 receptors. The effect of PGE2 on T lymphocytes
is less clearly delineated; PGE2 favors the development
of helper T (Th)2 cells by inhibiting IL-2 and interferon
(IFN)-g production in human CD41 cells (Hilkens et al.,
1995) and inhibiting the secretion of IL-12 from macro-
phages (Van der Pouw Kraan et al., 1995). Furthermore,
culture of dendritic cells in the presence of PGE2 results
in Th2 cell differentiation and increased synthesis of
IL-5 (Kalinski et al., 1997). However, with an allergen
challenge, inhaled PGE2 protects against the late re-
sponse as well as the early response, suggesting that its
anti-inflammatory action against eosinophils may pre-
dominate over its T cell action (Pavord et al., 1993). The
effects of other prostanoids on inflammatory cells are
less clear. Tx causes airway hyperresponsiveness in an-
imal models, but this has not been seen in human stud-
ies with inhaled U46619 (Jones et al., 1992).

4. Role in asthma.
a. RELEASE. Bronchoalveolar lavage studies have dem-

onstrated increased concentrations of PGF2a, PGD2, and
TxB2 in patients with asthma (Liu et al., 1990; Ooster-
hoff et al., 1995; Dworski et al., 1994; Smith et al., 1992).
PGD2 is the prostanoid present in highest concentration,
and this is correlated with an increase in mast cell
tryptase, indicating the likely mast cell origin of the
mediator. After allergen challenge, there is an increase
in PGD2 and TxB2 levels (Dworski et al., 1994). A uri-
nary metabolite of Tx (11-dehydro-TxB2) is increased in
asthmatic subjects after challenge with allergen (Kum-
lin et al., 1992). COX-2 shows increased expression in
the airways of asthmatic patients and is presumably
induced by proinflammatory cytokines (Demoly et al.,
1997). In peripheral leukocytes of asthmatic patients,
there is increased expression of COX-1 and COX-2
mRNA (Kuitert et al., 1996).

b. EFFECTS OF INHIBITORS. Nonselective COX inhibi-
tors, including aspirin and flurbiprofen, have little or no
beneficial effect in challenge studies or in the treatment
of clinical asthma, but this may be because they block
production of both bronchoconstricting (PGD2, PGF2a,
and TxA2) and bronchodilating (PGE2 and PGI2) medi-

ators. Specific Tx synthase inhibitors have been devel-
oped for use in asthma. Ozagrel (ONO-046), a moder-
ately potent orally active Tx synthase inhibitor, reduces
airway hyperresponsiveness to cholinergic agonists
when given orally or by aerosol, but the effect is very
small and unlikely to be of clinical significance (Fu-
jimura et al., 1990a,b). Another, more potent, Tx syn-
thase inhibitor, pirmagrel (CGS13080), completely pre-
vents the increase in serum TxB2 levels after allergen
challenge in asthmatic patients. Although it causes a
very small reduction in the early response to allergen,
there is no effect on the late response or on airway
hyperresponsiveness (Manning et al., 1991). Several TP
receptor antagonists have also been studied in asthma
and have the advantage over Tx synthase inhibitors that
they inhibit the bronchoconstricting effects of PGF2a,
PGD2, and 8-epi-PGF2a, in addition to TxA2. Vapiprost
(GR32191) has no effect on airway hyperresponsiveness
in asthmatic patients after 3 weeks of administration
(Stenton et al., 1992) and no effect in exercise-induced
asthma (Finnerty et al., 1991), whereas another TP re-
ceptor antagonist, ramatroban (Bay u3405), has a small
effect on methacholine responsiveness (Aizawa et al.,
1996). However, ramatroban is ineffective against exer-
cise-induced asthma, at a dose that blocks PGD2-
induced bronchoconstriction, and is ineffective against
histamine and bradykinin challenge (Magnussen et al.,
1992; Johnston et al., 1992; Rajakulasingam et al.,
1996). The potent TP receptor antagonist seratrodast
has a small bronchodilating effect after prolonged ad-
ministration (Samara et al., 1997). Overall, neither Tx
synthase inhibitors nor receptor antagonists have useful
clinical effects in asthma, suggesting that bronchocon-
strictor prostanoids do not play a major role in the
pathophysiological mechanisms of asthma.

PGE2, in contrast, may be important in protecting
against bronchoconstriction and controlling the inflam-
matory response (Pavord and Tattersfield, 1995). Inhi-
bition of PGE2 formation by COX inhibitors may there-
fore be potentially detrimental. Indeed, in a small
proportion of asthmatic patients, aspirin and other non-
selective COX inhibitors induce asthma (Szczeklik,
1997). Aspirin challenge in aspirin-sensitive patients
inhibits the formation of PGE2 and increases LT forma-
tion but, surprisingly, also increases concentrations of
PGD2 and PGF2a (Szczeklik et al., 1996b). PGE2 inha-
lation protects against asthma induced by inhaled ly-
sine-aspirin in aspirin-sensitive asthmatic patients
(Szczeklik et al., 1996a). Selective COX-2 inhibitors,
such as L745,337 and A398, may also prove to be safe in
patients with aspirin-sensitive asthma, because it is pos-
sible that bronchoconstriction in these patients may be
the result of inhibition of PGE2 synthesis by COX-1.
Nimesulide, a COX-2 selective blocker, is reported to be
well tolerated in aspirin-sensitive asthmatics (Senna et
al., 1996). PGE2 may have additional therapeutic poten-
tial in asthma, but its tendency to induce coughing is a
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serious limitation. Because the receptors on sensory
nerves (probably EP1 receptors) differ from those that
mediate bronchodilation and inhibition of anti-inflam-
matory effects (mainly EP2 receptors), selective EP ago-
nists (such as butaprost) may be more useful.

c. CONCLUSIONS. Prostanoids are produced in asth-
matic airways and appear to have several effects on the
airways, including bronchoconstriction, plasma exuda-
tion, sensitization of nerve endings, and effects on in-
flammatory cells, which are mediated by prostanoid re-
ceptors. However, inhibition of their formation with
COX or Tx synthase inhibitors or inhibition of TP recep-
tors does not appear to benefit asthmatic patients. One
possibility is that COX inhibitors, while blocking the
formation of bronchoconstricting prostanoids (PGD2,
PGF2a, and TxA2), also inhibit the formation of the bron-
chodilating PGs (PGE2 and PGI2), which may counteract
these effects. Furthermore, isoprostanes may be formed
in response to oxidative stress in asthma, and their
formation occurs independently of COX function.

B. Leukotrienes

There is increasing evidence that LTs play an impor-
tant role in the pathophysiological changes of asthma.
This has mainly been provided by studies with potent
inhibitors of LT receptors, which are now in clinical use
for asthma therapy.

1. Synthesis and metabolism. LTs are potent lipid
mediators produced by arachidonic acid metabolism in
cell or nuclear membranes. They are derived from ara-
chidonic acid, which is released from membrane phos-
pholipids via the activation of phospholipase A2. Arachi-
donic acid is subsequently metabolized by the enzyme
5-LO, to produce LTs. The free 5-LO enzyme is found in
the cytoplasm and cannot metabolize arachidonic acid.
However, after the free 5-LO has been activated, it is
translocated to the nuclear membrane, where a mem-
brane-bound protein termed 5-LO-activating protein
stabilizes the translocated 5-LO, thus allowing the
transformation of arachidonic acid into LTA4 (Evans et
al., 1991). Recently, a family of mutations of 5-LO genes
have been reported in asthmatics. These are character-
ized by a variable number of tandem repeat segments in
the promoter region, and they modify reporter gene
transcription. This may account for differences in the
susceptibility of patients to drugs modifying 5-LO activ-
ity (In et al., 1997). LTA4 is further metabolized to LTC4
(via the activation of LTC4 synthase) or to LTB4 (by
LTA4 hydrolase). After release into the extracellular
environment, LTC4 can be further metabolized to LTD4
and LTE4 by cleavage of the peptide side chain of LTC4.
Several types of airway cells, including mast cells, eo-
sinophils, macrophages, neutrophils, and epithelial
cells, can synthesize LTs in response to a variety of
stimuli. LTB4, synthesized predominantly by LTA4 hy-
drolase in neutrophils, is an extremely potent activator
of neutrophils, causing aggregation, chemotaxis, and de-

granulation (Ford-Hutchinson, 1991; Brain and Wil-
liams, 1990). LTC4, LTD4, and LTE4 are the active con-
stituents of what was once termed “slow reacting
substance of anaphylaxis.”

2. Receptors. The biological effects of LTs occur
through their ability to stimulate specific receptors,
which have been identified on several cell types. There
are probably multiple receptors, although two major
classes have been well characterized. The BLT receptors
are activated by LTB4 and to a lesser extent by 20-OH-
LTB4 and 12-(R)-hydroxyeicosatetraenoic acid (HETE).
The BLT receptor is a 60-kDa plasma membrane protein
(Miki et al., 1990) and has recently been cloned
(Yokomizo et al., 1997). Cys-LTs act via cys-LT recep-
tors, of which two types have been pharmacologically
characterized. Cys-LT1 receptors mediate all of the
known airway effects of cys-LTs in human cells
(Coleman et al., 1995). A second receptor type, the cys-
LT2 receptor, has been described on pulmonary veins, on
the basis of responses to certain LT antagonists (Met-
ters, 1995; Gorenne et al., 1996). To date, none of these
LT receptors has been cloned.

3. Effects on airways.
a. AIRWAY SMOOTH MUSCLE. Cys-LTs are very potent

contractile agents for human bronchi in vitro, being
approximately 1000 times more potent than histamine,
and they elicit this effect via activation of cys-LT1 recep-
tors (Krell et al., 1990). There is a certain degree of tone
in human airways in vitro, and this is partly mediated
by cys-LTs, because it can be reduced by 5-LO inhibitors
and by cys-LT1 receptor antagonists (Ellis and Undem,
1994). The ability of cys-LTs to act as potent broncho-
constricting agents has also been demonstrated in vivo,
both in normal subjects and in patients with asthma
(Drazen, 1988). Inhaled LTD4 also increases the maxi-
mal airway narrowing induced by inhaled methacholine
(Bel et al., 1987), and LTE4 induces airway hyperrespon-
siveness to inhaled histamine, an effect that may persist
for several days (Arm et al., 1988; O’Hickey et al., 1991).
LTB4 has no direct effect on human airway smooth mus-
cle and does not cause bronchodilation after inhalation
in asthmatic patients, even when combined with PGD2
(Black et al., 1989a). Cys-LTs may also stimulate airway
smooth muscle proliferation (Cohen et al., 1995), al-
though this has not yet been shown for human airway
smooth muscle and may be secondary to release of Tx.

b. VESSELS. Cys-LTs potently elicit increased vascular
permeability in airways, leading to airway edema (Ara-
kawa et al., 1993; Henderson, 1994). The potential im-
portance of allergen-induced edema in the airways has
been demonstrated with the use of 5-LO inhibitors in
experimental animals (Hui et al., 1991), although such
studies have yet to be performed with asthmatic pa-
tients.

c. SECRETION. Cys-LTs increase mucus secretion, both
directly via effects on goblet cells and submucosal gland
cells (Hoffstein et al., 1990; Goswami et al., 1989) and
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indirectly via the activation of airway nerves, leading to
reflex secretion from submucosal glands (Marom et al.,
1982).

d. NERVES. In guinea pigs, LTD4-induced bronchocon-
striction and plasma exudation are partly mediated by
tachykinin release, suggesting that LTD4 releases neu-
ropeptides from sensory nerves (Ishikawa et al., 1996).
This is unlikely to be relevant in vivo in humans, be-
cause inhaled LTD4 does not cause coughing and there is
no effect of an anticholinergic drug on the bronchocon-
striction response (Ayala et al., 1988).

e. INFLAMMATORY CELLS. LTB4 and 5-HETE are potent
stimuli for leukocyte function, including chemotaxis and
aggregation of polymorphonuclear leukocytes (Ford
Hutchinson, 1990), effects that are mediated by activa-
tion of BLT receptors (Rola Pleszczynski and Stankova,
1992). Furthermore, LTB4 elicits eosinophilic infiltra-
tion into guinea pig skin (Faccioli et al., 1991) and air-
ways (Silbaugh et al., 1987) and is a potent activator of
the oxidative burst in eosinophils (Perkins et al., 1995).
Specific inhibitors of 5-LO inhibit allergen-induced eo-
sinophilic infiltration in guinea pig skin (Teixeira et al.,
1994) and airways (Tohda et al., 1997) and in mouse
airways, where they also block mucus secretion (Hen-
derson et al., 1996). Furthermore, LTB4 antagonists
block allergen-induced eosinophilic infiltration into
guinea pig lungs (Richards et al., 1989, 1991), although
this finding has not been confirmed in other studies
(Seeds et al., 1995). In contrast to the potent effects of
LTB4 in guinea pig eosinophils, this mediator has little
effect on human eosinophils.

Inhaled cys-LTs induce an eosinophil-rich infiltrate
into the airways in experimental animals (Foster and
Chan, 1991; Wegner et al., 1993; Underwood et al.,
1996). This unexpected effect of cys-LTs appears to be
the result of release of IL-5 (Underwood et al., 1996). An
eosinophil response to cys-LTs has also been observed in
the lungs of a small group of asthmatic patients, both in
airway biopsies (Laitinen et al., 1993) and in induced
sputum (Diamant et al., 1997). This is consistent with
reports that cys-LT antagonists reduce allergen-induced
eosinophilic infiltration into the airways of experimental
animals (Chan et al., 1990; Nakagawa et al., 1993),
which suggests a potential anti-inflammatory effect of
anti-LTs. This suggestion is supported by the obser-
vations that various 5-LO inhibitors can also inhibit
allergen-induced eosinophilic infiltration into the air-
ways of experiment animals (Gulbenkian et al., 1990;
Yeadon et al., 1993; Richards et al., 1989). Such obser-
vations have yet to be convincingly confirmed in asthma,
although several preliminary studies have suggested
that anti-LTs reduce the number of inflammatory cells
in bronchoalveolar lavage fluid from allergic subjects
undergoing segmental allergen challenge (Calhoun et
al., 1997) and reduce circulating blood eosinophil num-
bers (Reiss et al., 1996). The 5-LO inhibitor zileuton has
also been reported to reduce the number of eosinophils

in circulating blood of patients with nocturnal asthma,
with clinical improvement (Wenzel et al., 1995), al-
though a trial of the specific LTB4 antagonist LY293111
indicated no clinical benefit in allergen-induced early or
late responses (Evans et al., 1996a), despite a reduction
in neutrophil numbers.

4. Role in asthma.
a. RELEASE. In humans, elevated levels of cys-LTs

have been detected in plasma, bronchoalveolar lavage
fluid, and sputum samples obtained from asthmatics
during spontaneous exacerbations of their asthma or
after allergen exposure (Taylor et al., 1989; Wenzel et
al., 1995). Furthermore, several groups have shown el-
evated levels of LTE4 in the urine of allergic patients
undergoing allergen exposure (Taylor et al., 1989; Dra-
zen et al., 1992) and exhibiting nocturnal asthma (Bellia
et al., 1996). In another study, the increase in urinary
LTE4 levels in allergic asthmatics parallels the broncho-
constriction and subsides with resolution of the airway
response (Kumlin et al., 1992). Urinary LTE4 levels are
increased in aspirin-sensitive asthmatic patients (Kum-
lin et al., 1992), supporting the view that in these pa-
tients aspirin produces its effect by increasing cys-LT
production. This is consistent with the recent demon-
stration of increased LTC4 synthase expression in bron-
chial biopsies of aspirin-sensitive asthmatics (Sampson
et al., 1997), and this may be linked to a polymorphism
of the LTC4 synthase gene (Sanak et al., 1997).

b. EFFECTS OF INHIBITORS. Numerous clinical studies
have been performed with cys-LT1 receptor antagonists
and 5-LO inhibitors (collectively termed anti-LTs) and
support a role for cys-LTs in asthma (Chung, 1995;
O’Byrne et al., 1997; Smith, 1996). There are no clear
differences between 5-LO inhibitors and cys-LT1 recep-
tor antagonists, suggesting that LTB4 does not play a
role in asthma. This is supported by the lack of effect of
an LTB4 antagonist in asthmatic patients, at least dur-
ing allergen challenge (Evans et al., 1996a). Several
anti-LTs have been shown to improve base-line lung
function in asthmatic patients (Hui et al., 1991; Joos et
al., 1991; Kips et al., 1991; Gaddy et al., 1992; Israel et
al., 1993b; Reiss et al., 1997) but not in nonasthmatic
subjects (Smith et al., 1990; Spencer et al., 1991). This
suggests that there is a certain degree of LT tone in
asthmatic airways. The bronchodilating effect of anti-
LTs, although modest, is additive with that of b2-ago-
nists (Hui et al., 1991; Gaddy et al., 1992), indicating
that anti-LTs may inhibit some component of airway
narrowing other than smooth muscle contraction (such
as edema).

Several studies have shown the efficacy of anti-LTs
during various provocation challenges. Anti-LTs protect
against the early response to allergen in allergic asth-
matics (Fuller et al., 1989; Taylor et al., 1991) and shift
the allergen dose-response curve to the right approxi-
mately six-fold (Dahlen et al., 1991), supporting a role
for mast cell-derived LTs in allergen-induced broncho-
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constriction (Holgate, 1996). The ability of anti-LTs to
inhibit allergen-induced late responses is less certain,
because of the change in base-line lung function. In a
preliminary study with LY171883, no significant effect
on the late response was observed (Fuller et al., 1989), a
finding confirmed by studies evaluating inhaled
L-648,051 (Bel et al., 1990). In contrast, the more potent
antagonist zafirlukast and the 5-LO-activating protein
inhibitor Bay x1005 appear to have some effect on the
late response (Taylor et al., 1991; Dahlen et al., 1997).
Anti-LTs also protect against cold air- and exercise-
induced bronchoconstriction in asthmatic subjects
(Israel et al., 1990; Manning et al., 1990; Robuschi et al.,
1992; Finnerty et al., 1992; Makker et al., 1993). Anti-
LTs are particularly effective in blocking aspirin-
induced asthma in aspirin-sensitive asthmatics, giving
almost complete protection (Christie et al., 1991;
Yamamoto et al., 1994; Israel et al., 1993a; Dahlen et al.,
1993; Nasser et al., 1994), and they also cause bron-
chodilation (Dahlen et al., 1993).

There are now several well controlled studies with
anti-LTs demonstrating clinical efficacy in patients with
asthma. For example, zafirlukast reduces symptoms
and improves lung function, in addition to reducing ex-
acerbations (Barnes et al., 1997; Spector et al., 1994;
Suissa et al., 1997). Similar effects have been seen after
regular treatment with montelukast (administered
once-daily) and pranlukast (administered twice-daily)
(Reiss et al., 1998; Barnes et al., 1997). The effects of LT
antagonists are supported by similar effects of the 5-LO
inhibitor zileuton (Israel et al., 1993b, 1996; Fischer et
al., 1995; Dekhuijzen et al., 1997). Furthermore, the
addition of zileuton to therapy with low doses of inhaled
corticosteroid resulted in greater control of asthma, com-
pared with that achieved by increasing the dose of the
inhaled steroid, suggesting that drugs affecting the syn-
thesis or action of LTs may have biological activities
complementary to those of the inhaled corticosteroids
(O’Connor et al., 1996). It is of interest that even high doses
of inhaled or orally administered steroids do not reduce LT
production in asthma, as measured by urinary LTE4 ex-
cretion (Dworski et al., 1994; O’Shaughnessy et al., 1993);
therefore, anti-LTs may be usefully added to inhaled cor-
ticosteroids for patients not achieving control with low
doses.

One of the features of early studies of anti-LTs in
asthma was the heterogeneity of responses, with some
patients (approximately one-third) showing a very good
response and others being apparently unresponsive.
This presumably reflects the varying contributions of
LTs in different patients and might be a reflection of
polymorphism of the 5-LO gene (In et al., 1997).

c. CONCLUSIONS. There is now substantial evidence
that cys-LTs play an important role in asthma. Cys-LT
production is increased in asthma in response to various
challenges that worsen asthma. Cys-LTs are potent me-
diators of bronchoconstriction, plasma exudation, and

mucus secretion, and there is now a growing body of
evidence that they may also increase eosinophilic in-
flammation. The importance of cys-LTs in asthma has
been highlighted by the clinical usefulness of LT recep-
tor antagonists, which are now in routine use in several
countries. This has been supported by similar clinical
benefits of 5-LO inhibitors. Some patients, particularly
those with aspirin-sensitive asthma, respond very well
to anti-LTs, whereas others show little benefit, indicat-
ing that LTs play a variable role. Anti-LTs are less
effective than corticosteroids in asthma treatment, sug-
gesting that other inflammatory mediators play impor-
tant roles in most patients. LTB4 does not appear to play
an important role in asthma, which is not surprising,
because neutrophilic infiltration is not a feature of
asthma in most patients.

C. Platelet-Activating Factor

PAF has long been implicated in the pathophysiolog-
ical mechanisms of asthma, because exogenous PAF
closely mimics many of the clinical features of asthma,
including airway hyperresponsiveness.

1. Synthesis and metabolism. PAF is an ether-linked
phospholipid (1-O-alkyl-sn-glycero-3-phosphocholine)
that was first described as a substance released from
IgE-stimulated basophils. The synthesis of PAF occurs
in a wide variety of inflammatory cells, including plate-
lets, neutrophils, basophils, macrophages, and eosino-
phils (Barnes et al., 1989; Chung, 1992). The synthesis of
PAF in inflammatory cells is generally via a two-step
enzymatic pathway involving first the activation of
phospholipase A2, which cleaves a free fatty acid from
ether-linked phospholipids (called plasmalogens) to
yield lyso-PAF; under appropriate conditions, lyso-PAF
can be acetylated, to form the biologically active PAF, by
a rate-limiting enzyme that is termed acetyl transferase
and is found in the cytoplasm of inflammatory cells
(Barnes et al., 1989). Large amounts of PAF can be
synthesized by several inflammatory cell types in the
lung, including resident cells such as mast cells (Triggi-
ani et al., 1991) and alveolar macrophages (Bratton et
al., 1994).

PAF is not a single, biologically active molecule;
rather, several molecular species of PAF with significant
biological activity are now known to exist (McManus et
al., 1993). For example, the ester-linked, 1-acyl species
1-palmitoyl-2-acetoyl-sn-glyceryl-3-phosphocholine
(PAGPC) is synthesized by a wide variety of cells, in-
cluding endothelial cells, basophils, mast cells, and lym-
phocytes (Columbo et al., 1993; Triggiani et al., 1991).
PAGPC and related members of this family of lipids can
interact with a G protein-linked receptor, with the acyl-
PAFs being approximately 300 to 1000 times less potent
than PAF (Columbo et al., 1993; Tordai et al., 1994).
However, PAGPC can also act as a natural PAF receptor
antagonist (Columbo et al., 1993; Tordai et al., 1994;
Mazer et al., 1998), raising the possibility that these
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other forms of PAF may be involved as autoregulatory
molecules for PAF.

The major enzyme responsible for the catabolism of
PAF is PAF acetylhydrolase, a PAF-specific esterase
that cleaves the acetyl group at the sn-2-position, pro-
ducing lyso-PAF. PAF acetylhydrolase was initially de-
scribed as being abundant in human plasma and was
later shown to be associated with low density lipopro-
teins (Stafforini et al., 1987). Since these early observa-
tions, acetylhydrolase has been described in various or-
gans, including lung, kidney, brain, and liver (Venable et
al., 1993). There is now known to be an intracellular
acetylhydrolase enzyme present in the cytoplasm of sev-
eral inflammatory cell types, including mast cells, mac-
rophages, and platelets. These cells can release acetyl-
hydrolase and probably contribute to the extracellular
acetylhydrolase content that has been identified in sev-
eral biological fluids, such as skin (Teaford et al., 1992)
and nasal lavage fluid (Shin et al., 1994; Touqui et al.,
1994), after allergen challenge. Furthermore, recent
studies have identified an acetylhydrolase in bronchoal-
veolar lavage fluid that is distinct from either plasma
acetylhydrolase or erythrocyte-derived acetylhydrolase
(Triggiani et al., 1997). This novel enzyme is calcium
independent and has other characteristics that differen-
tiate it from other forms of acetylhydrolase that have
been identified (Triggiani et al., 1997). This enzyme was
present in smaller amounts in bronchoalveolar lavage
fluid obtained from patients with mild asthma (Triggi-
ani et al., 1997), supporting previous studies showing
reduced activity of plasma acetylhydrolase in young pa-
tients with moderate to severe asthma (Miwa et al.,
1988; Tsukioka et al., 1996). It has been proposed that
asthmatic patients have a genetic defect in plasma
acetylhydrolase (Miwa et al., 1988), although it is not yet
clear what causes the reduced acetylhydrolase activity
in bronchoalveolar lavage fluid. It is certainly not the
presence of an inflammatory condition in the airway,
because patients with fibrosis actually exhibited in-
creased levels of acetylhydrolase in bronchoalveolar la-
vage fluid (Triggiani et al., 1997). The deficiency of PAF
acetylhydrolase in Japanese children is an autosomal
recessive syndrome resulting from a missense mutation
that abolishes enzymatic activity, but it is not clear
whether this is associated with severe asthma (Staf-
forini et al., 1996). A recombinant human PAF acetylhy-
drolase has been produced and has been shown to reduce
PAF-induced inflammatory responses in the airways
(Tjoelker et al., 1995). Such observations suggest that
local inactivation of PAF at local sites of inflammation
might be a practical therapeutic approach.

2. Receptors. A PAF receptor has been cloned from
human platelets and leukocytes and shown to be a typ-
ical G protein-linked receptor with seven transmem-
brane domains (Nakamura et al., 1993; Shimizu and
Izumi, 1995). PAF receptors are expressed in animal and
human lung (Shirasaki et al., 1994b). Recent evidence

has shown that substitution of the Cys90, Cys95, or
Cys173 residues in the PAF receptor with alanine or
serine yields mutant receptors that do not bind PAF and
are not expressed on the surface of cells but are found
intracellularly (Le Gouill et al., 1997). The cell signaling
pathways initiated by PAF interactions with its receptor
are well characterized and include increases in [Ca21]i
(Mazer et al., 1991), increases in IP3 and diacylglycerol
levels, and induction of cell cycle-active genes, such as
fos, jun, and egr-1 (Mazer et al., 1991; Schulam et al.,
1991). PAF also activates the transcription factor AP-1
in bronchial epithelial cells (Le Van et al., 1998). The
PAF receptor undergoes homologous desensitization by
phosphorylation of cytoplasmic tail sites in the receptor
molecule (Takano et al., 1994), and related lipids such as
PAGPC can also desensitize the classical PAF receptor
(Mazer et al., 1998). PAF exposure, however, leads to an
increase in PAF receptor mRNA levels, suggesting in-
creased turnover of the receptor (Shirasaki et al.,
1994a). Overexpression of the PAF receptor in trans-
genic mice results in airway hyperresponsiveness, which
is attenuated by Tx, LT, and muscarinic antagonists
(Nagase et al., 1997).

Many PAF receptor antagonists have been identified
and have facilitated the characterization of PAF recep-
tors on a wide variety of inflammatory cells. However,
there have been findings with certain PAF receptor an-
tagonists that suggest that PAF may act via more than
one receptor. Evidence from both human and animal
studies suggests that there may be heterogeneity of PAF
receptors (Hwang, 1990; Lambrecht and Parnham,
1986; Kroegel et al., 1989). For example, PF10040 can
antagonize PAF-induced edema formation (Rossi et al.,
1992) and PAF-induced bronchial hyperresponsiveness
(Herd et al., 1994) but has no effect on PAF-induced
bronchoconstriction (Herd et al., 1994). Furthermore, it
has been demonstrated that only a small part of the total
amount of PAF generated by cells is actually released,
with intracellular PAF having been proposed to be a
signaling molecule itself (Stewart and Harris, 1991).
Such observations raise the possibility that a distinct
PAF receptor may exist intracellularly.

3. Effects on airways.
a. AIRWAY SMOOTH MUSCLE. PAF has little direct effect

on human airway smooth muscle contraction in vitro but
may elicit constriction through the release of other me-
diators (Johnson et al., 1992). PAF produces acute bron-
choconstriction when inhaled by patients with asthma
(Barnes et al., 1989). PAF-induced bronchoconstriction
is not inhibited by the H1 receptor antagonist ketotifen
(Chung et al., 1988) or the Tx antagonist GR32191B
(Stenton et al., 1990b). However, PAF-induced broncho-
constriction can be inhibited by LT antagonists, includ-
ing SKF 104353-Z (Spencer et al., 1991) and ICI 204,219
(Kidney et al., 1993), suggesting the involvement of
LTD4 in this response.
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b. VESSELS. PAF has potent effects on vascular smooth
muscle and elicits hypotension in several species
(Barnes et al., 1989). In the context of asthma, PAF is
very potent in causing vascular engorgement and in-
creased vascular permeability in the airways, leading to
plasma exudation of protein-rich fluid into the airway
lumen (O’Donnell and Barnett, 1987; Evans et al., 1989).
This may contribute to the acute airway obstruction
elicited by PAF, because this effect is not totally re-
versed by the airway smooth muscle relaxant salbuta-
mol (Diaz et al., 1997). In animal studies, inhaled PAF is
a potent inducer of airway plasma exudation (Lötvall et
al., 1991a), and this is mediated mainly via release of Tx
(Tokuyama et al., 1992). Inhalation of PAF by patients
with mild asthma induces arterial blood gas abnormal-
ities and ventilation/perfusion imbalances (Rodriguez-
Roisin et al., 1994; Felez et al., 1994). This hypoxemia is
not the result of the bronchoconstriction induced by
PAF, because it cannot be fully inhibited by salbutamol
(Roca et al., 1995; Diaz et al., 1997).

c. SECRETIONS. PAF stimulates fluid secretion from
porcine isolated trachea via activation of PAF receptors
and via a mechanism that does not depend on the re-
lease of acetylcholine, histamine, or cys-LTs (Steiger et
al., 1987). In feline airways, activation of PKC is in-
volved (Larivee et al., 1994). PAF also elicits mucus
secretion from isolated human airways, which may de-
pend in part on the generation of cys-LTs but is inde-
pendent of acetylcholine release (Goswami et al., 1989).
PAF stimulates mucin secretion from cultured tracheal
explants (Adler et al., 1987).

d. NERVES. One possible explanation for the ability of
PAF to induce increased responsiveness of the nose (Na-
rita and Asakura, 1993) and airways (reviewed above) is
that it functions via the activation of airway nerves.
PAF-induced airway hyperresponsiveness in experimen-
tal animals has been demonstrated to be inhibited by
capsaicin (Spina et al., 1991; Perretti and Manzini,
1993), suggesting that PAF may have effects on the
activation of sensory C-fibers in the airways. PAF up-
regulates the expression of H1 receptor mRNA in trigem-
inal ganglia (Nakasaki et al., 1998) and stimulates the
transcription factor AP-1 in human neuroblastoma cells
(Squinto et al., 1989).

e. INFLAMMATORY CELLS. PAF is a potent activator of
inflammatory cells. For example, PAF stimulates che-
motaxis and adhesion of eosinophils and neutrophils in
vitro (Kimani et al., 1988; Kroegel et al., 1988, 1991) In
addition, PAF can act as a priming agent for eosinophils
(Koenderman et al., 1991; Blom et al., 1992; Zoratti et
al., 1992). PAF-mediated priming of eosinophils is via
different signaling pathways, compared with IL-5-
induced priming, because it is not blocked by tyrosine
kinase inhibitors (Van der Bruggen et al., 1998). PAF
enhances LTC4 release from eosinophils from asthmatic
patients but not from normal subjects (Shindo et al.,
1996). PAF induces greater activation of circulating eo-

sinophils in vitro after allergen challenge of asthmatic
patients, indicating an interaction between PAF and
other priming factors, such as IL-5 and granulocyte-
macrophage colony-stimulating factor (GM-CSF) (Evans
et al., 1996b). PAF also has a greater activating effect on
neutrophils from asthmatic patients, compared with
those from normal control subjects (Shindo et al., 1997).
In vivo, PAF elicits marked eosinophilic infiltration into
lung tissue after both intravenous and aerosol adminis-
tration to guinea pigs (Lellouch Tubiana et al., 1988;
Sanjar et al., 1990) and rabbits (Coyle et al., 1990). In
both species, PAF-induced eosinophilic infiltration is re-
duced by selective platelet depletion with an antiplatelet
antiserum, suggesting the involvement of platelets in
eosinophil recruitment in vivo. In primates, single and
multiple exposures to aerosolized PAF elicit an increase
in the number of eosinophils and neutrophils in bron-
choalveolar lavage fluid, accompanied by increased
bronchial responsiveness to inhaled methacholine (Weg-
ner et al., 1992). Although inhalation of PAF has been
reported to elicit bronchial hyperresponsiveness in hu-
mans (Cuss et al., 1986; Kaye and Smith, 1990), this has
not been universally shown (Spencer et al., 1990; Lai et
al., 1990b), and it is associated with neutrophilic infil-
tration into the lungs (Wardlaw et al., 1990). However,
recent data from transgenic mice overexpressing a
guinea pig PAF receptor have shown that such mice
exhibit airway hyperresponsiveness to methacholine
(Ishii et al., 1997). In humans, intradermal administra-
tion of PAF to atopic subjects has been shown to induce
eosinophilic infiltration (Henocq and Vargaftig, 1986).

4. Role in asthma.
a. RELEASE. Several groups have attempted to quan-

tify the release of PAF in plasma or bronchoalveolar
lavage fluid from asthmatic and allergic subjects, with
conflicting results (Nakamura et al., 1987; Miadonna et
al., 1989; Stenton et al., 1990a; Tsukioka et al., 1996).
However, high levels of lyso-PAF were found in these
studies and, because lyso-PAF is the precursor as well as
the metabolite of PAF, this complicates the interpreta-
tion of these data. After segmental allergen challenge in
asthmatic patients, high levels of lyso-PAF were corre-
lated with increased acetylhydrolase and phospholipase
A2 activity (Chilton et al., 1996). PAF has also been
detected in the plasma of patients exhibiting a late asth-
matic response (Chan Yeung et al., 1991).

b. EFFECTS OF INHIBITORS. Despite considerable in
vitro and in vivo data for humans suggesting that PAF is
an important mediator of asthma, clinical studies with
PAF receptor antagonists have been very disappointing.
Apafant (WEB 2086) inhibited PAF-induced broncho-
constriction (Adamus et al., 1990) and platelet responses
to PAF (Hayes et al., 1991) but had no significant effect
on allergen-induced early or late responses or airway
hyperresponsiveness (Freitag et al., 1993). Furthermore,
12-week treatment of atopic asthmatics with apafant
showed no clinical benefit in terms of lung function or
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the use of rescue medication or inhaled corticosteroids
(Spence et al., 1994). Similarly, UK74505 abolishes
PAF-induced bronchospasm (O’Connor et al., 1994) but
has no effect on allergen-induced early or late responses
or on airway hyperresponsiveness (Kuitert et al., 1993).
UK80067, the racemate of UK74505, has no effect on
adult asthmatics receiving this drug for 4 weeks (Kuitert
et al., 1995). Recent data suggested that 1-week treat-
ment with the potent, long-acting, PAF receptor antag-
onist foropafant (SR27417A) produced a modest reduc-
tion in the magnitude of the allergen-induced late
response, although there was no effect on the early re-
sponse, the allergen-induced airway responsiveness, or
base-line lung function (Evans et al., 1997). Another
PAF antagonist, Y24180, has also been shown to reduce
airway responsiveness to inhaled methacholine in asth-
matics (Hozawa et al., 1995), although these data are at
variance with findings from other studies (Hsieh, 1991;
Evans et al., 1997). Overall, these clinical data with PAF
antagonists suggest that extracellular PAF plays only a
small part in human allergic asthma, which is surpris-
ing, in view of its prominent role in animal models.

c. CONCLUSIONS. PAF is produced by many of the cells
that are activated in asthmatic airways and has a pro-
found effect on airway function, producing bronchocon-
striction, inducing airway hyperresponsiveness, plasma
exudation, and mucus hypersecretion, and recruiting
and activating eosinophils. However, PAF antagonists
have proved to be very disappointing for the treatment
of asthma, producing minor or no effects, even during
chronic treatment. This may be because PAF is not
important in chronic asthma or because the antagonists
used are not capable of blocking endogenously produced
PAF, which acts locally in the airways almost as a “para-
crine” mediator. A PAF synthase inhibitor would be
particularly valuable for elucidation of the role of PAF
and should also inhibit the production of intracellular
PAF. It is possible that PAF may play a role in some
patients with asthma and during exacerbations, but this
has not yet been explored.

D. Other Lipid Mediators

1. Synthesis and metabolism. Several other lipid me-
diators, including hydroperoxyeicosatetraenoic acid
(HPETEs), mono- and di-HETEs, and lipoxins (LXs),
have been shown to have effects in the airways that are
of potential relevance to asthma (Sigal and Nadel, 1991).
Most of these substances are metabolic products of the
15-LO enzyme, which catalyzes the insertion of molecu-
lar oxygen at the carbon atom at position 15 in the
arachidonic acid molecule (Samuelsson et al., 1987).
15-LO has been demonstrated in human tracheal epi-
thelium (Hunter et al., 1985), eosinophils (Turk et al.,
1982), endothelial cells (Hopkins et al., 1984), and mono-
cytes (Conrad et al., 1992). Furthermore, immunohisto-
chemical studies have revealed that 15-LO is expressed
in airway epithelium and eosinophils (Sigal et al., 1992;

Bradding et al., 1995). LXs (LO interaction products), of
which the most prevalent is LXA4, are produced by in-
teractions between 15-LO and 5-LO or between 12-LO
and 5-LO.

2. Receptors. Little is known regarding receptors for
15-LO products, and it is not clear whether there are
distinct receptors for these HETEs and HPETEs. Spe-
cific LXA4 receptors have been identified in murine and
human cells (Takano et al., 1997; Fiore et al., 1994).

3. Effects on airways. Both mono- and di-HETEs are
chemotactic for neutrophils and eosinophils (Johnson
et al., 1985; Kirsch et al., 1988; Morita et al., 1990;
Schwenk et al., 1992). In addition, 15-HETE has been
demonstrated to induce LTC4 release from mastocytoma
cells (Goetzl et al., 1983) and mucus secretion from dog
trachea (Johnson et al., 1985). LXs have been demon-
strated to contract airway smooth muscle (Dahlen et al.,
1987; Meini et al., 1992) and to activate PKC (Hansson et
al., 1986). LXA4 inhibits neutrophil and eosinophil acti-
vation by N-formyl-methionyl-leucyl-phenylalanine and
PAF, respectively (Lee et al., 1991; Soyombo et al., 1994),
and inhibits adhesion of leukocytes (Scalia et al., 1997),
suggesting that it has an anti-inflammatory role. LXA4
also inhibits cholinergic neurotransmission in airways,
an effect that may be mediated by release of NO
(Tamaoki et al., 1995).

The contribution of 15-LO metabolites of arachidonic
acid to bronchial hyperresponsiveness is not clear. 15-
HETE has been shown to reduce airway responsiveness
but to prolong allergen-induced bronchospasm (Lai
et al., 1990a,b). Similarly, 15-HETE does not cause air-
way hyperresponsiveness in rabbits, despite causing in-
filtration of neutrophils into the airway (Riccio et al.,
1997). In contrast, 15-HPETE produces a sustained in-
crease in airway responsiveness to inhaled histamine in
rabbits, which is accompanied by neutrophilic infiltra-
tion (Riccio et al., 1997). The airway hyperresponsive-
ness induced by inhaled 15-HPETE was significantly
reduced by pretreatment with capsaicin and atropine,
suggesting the involvement of airway cholinergic and
peptidergic nerves (Riccio et al., 1997).

4. Role in asthma. Immunoreactive LXA4 has been
detected in increased concentrations in bronchoalveolar
lavage fluid from asthmatic patients (Lee et al., 1990).
Inhaled LXA4 has little effect on airway function but
antagonizes the bronchoconstricting effect of inhaled
LTC4 (Christie et al., 1992), supporting the view that
LXs may function as endogenous antagonists of cys-LTs
(Lee, 1995). Stable LXA4 analogues have anti-inflamma-
tory effects and inhibit neutrophil chemotaxis and acti-
vation, suggesting that these endogenous substances are
anti-inflammatory (Scalia et al., 1997). 15-LO may
therefore function as an anti-inflammatory regulator in
asthma by controlling the formation of LXs in response
to cys-LT formation in the airways. There is an increase
in levels of mRNA for 15-LO in circulating leukocytes of
asthmatic patients (Kuitert et al., 1996) and increased
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expression of 15-LO in epithelial cells of asthmatic pa-
tients (Bradding et al., 1995). IL-4 selectively increases
the expression of 15-LO in epithelial cells, and this may
account for the increase in expression in asthma (Sigal et
al., 1993).

IV. Peptide Mediators

Several peptides, including bradykinin, tachykinins,
CGRP, endothelins (ETs), and complement, are involved
in asthma. They are usually cleaved from larger precur-
sors and are released in an active form. They are subject
to degradation by peptidases (such as NEP) both in the
circulation and in the airways.

A. Bradykinin

Bradykinin has long been considered to be a mediator
involved in asthma, since the first demonstration of
bronchoconstriction in asthmatic patients after bradyki-
nin inhalation. The development of potent and long-
lasting bradykinin receptor antagonists has focused at-
tention on the role of bradykinin and other kinins in the
pathophysiological mechanisms of asthma, as well as on
the potential uses of bradykinin antagonists in asthma
therapy (Barnes, 1992b).

1. Synthesis and metabolism. Kinins are vasoactive
peptides that are formed, during the inflammatory re-
sponse, from the a2-globulins high molecular weight
(HMW) and low molecular weight (LMW) kininogens, by
the action of kininogenases (Bhoola et al., 1992). Kini-
nogenases include plasma kallikrein and tissue kal-
likrein. HMW and LMW kininogens are produced from
the same gene (containing 11 exons and 10 introns) as a
consequence of alternative splicing (Nakanishi, 1987).
Both kininogens are synthesized in the liver. HMW
kininogen is present only in plasma, whereas LMW
kininogen also occurs in tissues. Two kinins are formed
in humans, i.e., the nonapeptide bradykinin (Arg-Pro-
Pro-Gly-Phe-Ser-Pro-Phe-Arg), which is generated from
HMW kininogen, and the decapeptide lysyl-bradykinin
(kallidin), which is generated from LMW kininogen. Kal-
lidin is rapidly converted to bradykinin by the enzyme
aminopeptidase-N (Proud and Kaplan, 1988). There is
evidence for kinin activity in bronchoalveolar lavage
fluid from asthmatic patients (Christiansen et al., 1987,
1992), and it is likely that bradykinin is formed, by the
action of plasma and tissue kallikreins, in plasma that
has been exuded from the inflamed airways. The con-
centrations of kallikrein and kinins in bronchoalveolar
lavage fluid increase after allergen challenge (Chris-
tiansen et al., 1992). HMW kininogen is the preferred
substrate for plasma kallikrein, which is generated from
inactive prekallikrein by contact with certain negatively
charged surfaces, including basement membrane com-
ponents and proteoglycans, such as heparin released
from mast cells. Tissue kallikreins are produced in glan-
dular secretions and release kinins from both HMW and
LMW kininogens. Tissue kallikrein has been localized

immunocytochemically to serous cells in the submucosal
glands of human airways (Proud and Vio, 1993). Serine
proteases, such as a1-antitrypsin, are effective inhibi-
tors of kallikrein in the circulation, but in tissues kal-
likrein may remain activated for prolonged periods. Kal-
listatin is a kallikrein inhibitor that is present in some
tissues, but its role in airways is not yet known (Chao et
al., 1996).

Other proteases that may be produced by inflamma-
tory cells may also generate kinins from kininogens.
Mast cell tryptase is a weak kininogenase in vitro under
conditions of low pH, although it is unlikely that activity
occurs to any significant extent in vivo (Proud et al.,
1988). There is also some evidence that neutrophils and
platelets may release proteases with kininogen activity
(Proud, 1991).

Bradykinin is subject to rapid enzymatic degradation
and has a plasma half-life of ,30 sec. Bradykinin is
metabolized by several peptidases (collectively known as
kininases), which may be present in asthmatic airways.
Angiotensin-converting enzyme (ACE) may be impor-
tant for degrading bradykinin in the circulation, because
it is localized to endothelial cells, but it may also be
present in airway tissue (Dusser et al., 1988). ACE in-
hibitors, such as captopril and enalapril, potentiate both
the bronchoconstriction and microvascular leakage pro-
duced by bradykinin (Ichinose and Barnes, 1990c;
Lötvall et al., 1991b), suggesting that this may be the
mechanism of ACE inhibitor-induced cough. In guinea
pigs, chronic administration of captopril causes sponta-
neous coughing, which is blocked by the bradykinin an-
tagonist icatibant (Fox et al., 1996).

NEP (EC 3.4.24.11) appears to be the most important
enzyme for degradation of bradykinin in the airways.
Phosphoramidon, which inhibits NEP, enhances the
bronchoconstricting effect of bradykinin both in vitro
(Frossard et al., 1990) and in vivo (Ichinose and Barnes,
1990c; Lötvall et al., 1991b) in animals. Because NEP is
expressed in human airway epithelium (Baraniuk et al.,
1995), the shedding of airway epithelium in asthma may
result in the enhanced airway responses to bradykinin
seen in asthmatic patients.

A third enzyme, namely carboxypeptidase-N (kininase
1), may be important in degrading bradykinin in the
circulation, but an inhibitor of this enzyme (DL-mercap-
tomethyl-3-guanidinoethylthiopropionic acid) does not
have any effect on the bronchoconstriction response to
bradykinin in vivo (Ichinose and Barnes, 1990c). Car-
boxypeptidase-N converts bradykinin to [des-Arg9]-bra-
dykinin, which is selective for B1 receptors (Regoli and
Barabé, 1980). Aminopeptidase-M, which converts lysyl-
bradykinin to bradykinin, is widely distributed, so that
kallidin is rapidly converted to bradykinin. This enzyme
is expressed in airway epithelial cells (Proud et al.,
1994).

2. Receptors. Bradykinin exerts several effects on the
airways that are mediated by specific surface receptors. At
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least two subtypes of bradykinin receptors are recognized,
based on the rank order of potency of kinin agonists (Regoli
and Barabé, 1980), as follows: B1, [des-Arg10]-lysyl-brady-
kinin . [des-Arg9]-bradykinin 5 lysyl-bradykinin .. bra-
dykinin; B2, bradykinin 5 lysyl-bradykinin .. [des-Arg10]-
lysyl-bradykinin . [des-Arg9]-bradykinin. B1 receptors are
selectively activated by lysyl-bradykinin (kallidin) and [des-
Arg9]-bradykinin and are inducible by inflammatory signals.
B1 receptors are expressed in chronic inflammation in-
duced by IL-1b and IL-6 in rats and may play an important
role in hyperalgesia. The effects of bradykinin on airways
are mediated by B2 receptors, and there is no evidence for
functional B1 receptors in the airways. A B3 receptor has
also been proposed in airway smooth muscle of sheep
(Farmer et al., 1991), but there are doubts regarding its
existence, because it has been defined with weak antago-
nists.

The B2 receptor from animals and humans and a
human B1 receptor have been cloned (McEachern et al.,
1991; Hess et al., 1992; Mencke et al., 1995). Both have
the typical seven-transmembrane segment structure
common to all G protein-coupled receptors (McEachern
et al., 1991). Interestingly, [des-Arg10]-lysyl-bradykinin
is much more potent than [des-Arg9]-bradykinin at the
human B1 receptor, suggesting that potential B1 recep-
tor responses in human tissues may be overlooked if
[des-Arg9]-bradykinin is used as the only selective probe
(Mencke et al., 1995). Pharmacological studies suggest
that there may be subtypes of B2 receptors (Braas et al.,
1988; Hall, 1992), which may be more clearly defined
using molecular probes. With low stringency probes,
there is no evidence for additional types of bradykinin
receptors in human cDNA libraries (Mencke et al.,
1998).

The distribution of B2 receptors has been mapped in
human lung by autoradiography using [3H]bradykinin
(Mak and Barnes, 1991). There are high densities of
binding sites in bronchial and pulmonary vessels, par-
ticularly on endothelial cells. Epithelial cells, airway
smooth muscle (particularly in peripheral airways), sub-
mucosal glands, and nerves are also labeled, indicating
that bradykinin may have diverse effects on airway
function. A particularly high density of labeling is ob-
served in the lamina propria immediately beneath the
epithelium; it is not clear what cellular structures are
labeled, but nerves and superficial blood vessels are the
most likely structures.

3. Effects on airways. Bradykinin has many effects on
airway functions; some are mediated by direct activation
of B2 receptors on target cells, and others are mediated
indirectly via the release of other mediators or neuro-
transmitters.

a. AIRWAY SMOOTH MUSCLE. Inhaled bradykinin is a
potent bronchoconstrictor in asthmatic patients but has
little or no effect, even at high concentrations, in normal
individuals, suggesting increased responsiveness of air-
way smooth muscle to bradykinin, as observed with

other spasmogens (Fuller et al., 1987b; Polosa and Hol-
gate, 1990). In vitro, bradykinin is only a weak constric-
tor of proximal human airways, suggesting that its po-
tent bronchoconstricting effect in asthmatic patients is
mediated indirectly. However, bradykinin is more po-
tent in constricting peripheral human airways (Moli-
mard et al., 1994; Hulsmann et al., 1994b), partly via
direct stimulation of B2 receptors on airway smooth
muscle cells and partly via the release of Tx. Bradykinin
contracts airway smooth muscle in vitro, but in guinea
pig airways in vitro bradykinin has weak and variable
effects, which are influenced by the presence of airway
epithelium and by the activity of local degrading en-
zymes. Bradykinin causes relaxation of intact guinea pig
airways in vitro, but it constricts airways if the epithe-
lium is mechanically removed (Frossard et al., 1990;
Bramley et al., 1990). Bradykinin releases the broncho-
dilator PGE2 from epithelial cells (Bramley et al., 1990),
and epithelium removal therefore reduces the functional
antagonism, resulting in a bronchoconstricting effect of
bradykinin. Furthermore, because NEP is strongly ex-
pressed on airway epithelial cells, epithelium removal
may reduce bradykinin metabolism. A combination of
indomethacin (to inhibit PGE2 formation) and phosphor-
amidon (to inhibit NEP) mimics the effect of epithelium
removal (Frossard et al., 1990). The bronchoconstricting
effect of bradykinin in ferrets in vitro and in guinea pigs
in vivo is enhanced by the inhibition of both NEP (by
phosphoramidon) and ACE (by captopril) (Dusser et al.,
1988; Ichinose and Barnes, 1990c). In small human
bronchi in vitro, bradykinin may cause relaxation when
the airway epithelium is intact but it consistently causes
constriction after epithelium removal or addition of
phosphoramidon (Hulsmann et al., 1994b).

Intravenously administered bradykinin causes in-
tense bronchoconstriction in guinea pigs, which is mark-
edly inhibited by indomethacin, suggesting that a bron-
choconstricting COX product (probably Tx) largely
mediates this effect (Ichinose et al., 1990a). The bron-
choconstriction response to bradykinin instilled directly
into the airways is not reduced by indomethacin, how-
ever, suggesting a different mechanism of bronchocon-
striction after airway delivery of the mediator (Ichinose
et al., 1990a). In airway inflammation, it is likely that
bradykinin would be formed at the airway surface from
plasma kininogens exuded into the airway lumen from
leaky superficial blood vessels. In human subjects, inhi-
bition of COX by aspirin or flurbiprofen or treatment
with a Tx receptor antagonist had no effect on the bron-
choconstricting effect of inhaled bradykinin (Fuller et
al., 1987b; Polosa et al., 1990; Rajakulasingam et al.,
1996), although in one study an inhibitory effect of in-
haled lysine-aspirin was observed (Polosa et al., 1997a).
Similarly, antihistamines have no effect on bradykinin-
induced bronchoconstriction, suggesting that mast cell
mediator release is not involved (Polosa et al., 1990).
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The bronchoconstricting effect of bradykinin in guinea
pigs is also modulated by NO, because pretreatment
with aerosolized NOS inhibitors markedly potentiates
the bronchoconstricting effect of bradykinin (adminis-
tered intravenously or by inhalation) (Ricciardolo et al.,
1994). The source of NO is unclear but may be from
airway epithelium, which expresses constitutive NOS
(cNOS) and inducible NOS (iNOS) (Robbins et al., 1994;
Asano et al., 1994). In asthmatic patients, inhalation of
the NOS inhibitor NG-monomethyl-L-arginine (L-
NMMA) potentiates the bronchoconstricting action of
bradykinin, suggesting that bradykinin releases NO in
the airways to counteract the bronchoconstricting action
of bradykinin (Ricciardolo et al., 1996). Interestingly,
this potentiating effect is not seen in patients with more
severe asthma, possibly because of loss of the epithelial
source of NO (Ricciardolo et al., 1997).

In human airways, the bronchoconstricting effect of
bradykinin is likely to be mediated by B2 receptors,
because icatibant blocks the bronchoconstriction re-
sponse to bradykinin in vitro (Molimard et al., 1994;
Hulsmann et al., 1994b) and the B1-selective agonist
[des-Arg9]-bradykinin has no effect on airway function
in asthmatic patients (Polosa and Holgate, 1990). How-
ever, it is possible that B1 receptors are induced in more
severe asthma, and further studies with selective B1
agonists are needed.

b. VESSELS. Bradykinin is a potent inducer of airway
microvascular leakage and causes prolonged leakage at
all airway levels. This is partly mediated by the release
of PAF, because a PAF antagonist markedly inhibits the
prolonged leakage (Rogers et al., 1990). The immediate
leakage response to bradykinin is partly mediated by the
release of neuropeptides (probably SP) from airway sen-
sory nerves. The effect of bradykinin on plasma exuda-
tion is partly reduced by pretreatment with neurokinin
(NK)1 receptor antagonists (Sakamoto et al., 1993; Na-
kajima et al., 1994). The effect of bradykinin on leakage
is mediated by B2 receptors (which have been localized
to endothelial cells on postcapillary venules), because B2
antagonists inhibit the leakage response (Ichinose and
Barnes, 1990a; Sakamoto et al., 1992). The microvascu-
lar leakage induced by bradykinin is enhanced by inhi-
bition of both NEP and ACE (Lötvall et al., 1991c).

Bradykinin is a potent vasodilator of bronchial vessels
and causes an increase in airway blood flow (Parsons et
al., 1992a; Corfield et al., 1991). This is consistent with
the high density of bradykinin receptors on bronchial
vessels (Mak and Barnes, 1991) and suggests that a
major effect of bradykinin in asthma may involve hyper-
emia of the airways.

c. SECRETIONS. Bradykinin stimulates airway mucus
secretion from human submucosal glands in vitro, and
these effects are mediated by B2 receptors (Nagaki et al.,
1996), presumably indicating a direct effect of bradyki-
nin on submucosal glands. This is consistent with the
demonstration of B2 receptors on these glands by auto-

radiographic mapping (Mak and Barnes, 1991). Brady-
kinin also stimulates the release of mucus glycoproteins
from human nasal mucosa in vitro (Baraniuk et al.,
1990). Bradykinin stimulates ion transport in airway
epithelial cells, which is mediated by the release of PGs
(Leikauf et al., 1985). The effects of bradykinin on epi-
thelial cells are mediated by B2 receptors (Proud et al.,
1993). In animals, bradykinin also stimulates mucocili-
ary clearance and ciliary beating via the release of PGs
(Wong et al., 1990). Inhaled bradykinin increases muco-
ciliary clearance in normal humans, presumably reflect-
ing the stimulatory effect of bradykinin on airway secre-
tions (Polosa et al., 1992a).

d. NERVES. Perhaps the most important property of
bradykinin in airways is its ability to activate C-fiber
nociceptive sensory nerve endings (Barnes, 1992b). Bra-
dykinin is the mediator of inflammatory pain, and in the
airways this may be manifested as cough and tightness
of the chest, which are commonly observed in asthmatic
patients after inhalation of bradykinin (Fuller et al.,
1987b). Bradykinin stimulates bronchial C-fibers in
dogs. In guinea pigs, the bronchoconstriction response to
instilled bradykinin is reduced by atropine and by cap-
saicin pretreatment, which depletes neuropeptides from
sensory nerves, indicating that both a cholinergic reflex
and release of neuropeptides from sensory nerves are
involved (Ichinose et al., 1990a). Indeed, a combination
of atropine and capsaicin pretreatment largely abolishes
the bronchoconstriction response to instilled bradykinin
but has little effect on the bronchoconstriction response
to intravenously administered bradykinin (which is
largely inhibited by indomethacin) (Ichinose et al.,
1990a). Bradykinin also releases tachykinins from per-
fused guinea pig lung (Saria et al., 1988) and rat trachea
(Ray et al., 1991). Bradykinin enhances the bronchocon-
striction response to electrical field stimulation (medi-
ated by release of endogenous tachykinins) in guinea pig
bronchi in vitro (Miura et al., 1992) and the NANC
bronchoconstriction response to vagus nerve stimulation
in vivo (Miura et al., 1994). Tachykinin antagonists have
an inhibitory effect on the bronchoconstriction and
plasma exudation responses to bradykinin in guinea
pigs, suggesting that release of tachykinins from sensory
nerves is an important component of both responses
(Sakamoto et al., 1993; Nakajima et al., 1994). The effect
of bradykinin on airway sensory nerves is blocked by
icatibant, indicating that B2 receptors are involved in
the release of neuropeptides from sensory nerves (Miura
et al., 1992). Although studies in human subjects are
more limited, a nonselective tachykinin antagonist (FK-
224) has been shown to reduce the bronchoconstriction
response to inhaled bradykinin in asthmatic patients,
suggesting that bradykinin may release tachykinins in
asthmatic airways (Ichinose et al., 1992); however, this
was not confirmed in another study using the same
antagonist (Schmidt et al., 1996).
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Single-fiber recordings from sensory nerves of guinea
pig airways indicate that bradykinin is a potent activa-
tor of C-fibers and that this is a direct action, because it
is not blocked by COX inhibition but is blocked by icati-
bant (Fox et al., 1993). In guinea pigs treated with cap-
topril, there is evidence for increased sensitization of
C-fibers, which is blocked by icatibant, suggesting that
bradykinin is responsible. Indeed, bradykinin sensitizes
airway C-fibers to other neural activators (Fox et al.,
1996). However, bradykinin has no direct effect on the
release of neurotransmitters from airway cholinergic
nerves (Miura et al., 1992).

In asthmatic patients, the bronchoconstriction re-
sponse to bradykinin is reduced by anticholinergic pre-
treatment, indicating that a cholinergic reflex is in-
volved (Fuller et al., 1987b). Pretreatment with sodium
cromoglycate and nedocromil sodium is very effective in
inhibiting the airway response to bradykinin. This may
indicate the involvement of C-fiber activation in asth-
matic airways (Dixon and Barnes, 1989), because both
drugs have been found to inhibit C-fibers in animals
(Jackson et al., 1989). This suggests that bradykinin
may be an important mediator of cough and chest dis-
comfort in asthma. Bradykinin induces cough in normal
and asthmatic subjects (Choudry et al., 1989) and has
been implicated in ACE inhibitor-induced cough, which
is observed for approximately 10% of patients receiving
chronic therapy (Fuller, 1989). ACE inhibitor cough is
reduced by COX inhibitors and Tx antagonists, suggest-
ing that PGs (such as PGE2 or PGF2a) may be involved
(McEwan et al., 1990; Malini et al., 1997). Endogenous
bradykinin may stimulate the release of these PGs in
the larynx and trachea, leading to cough, although it is
not clear why only some patients are affected.

e. INFLAMMATORY CELLS. Bradykinin has few reported
direct effects on the recruitment or activation of inflam-
matory cells, although it may act indirectly through the
release of mediators from structural cells. For example,
bradykinin releases neutrophil and monocyte chemotac-
tic factors from airway epithelial cells (Koyama et al.,
1995). Bradykinin activates alveolar macrophages from
asthmatic patients to release mediators, including
LTB4, PAF, and other eosinophilic chemotactic factors
(Sato et al., 1996). In guinea pigs, a bradykinin antago-
nist inhibits allergen-induced eosinophilia, but whether
bradykinin antagonists have such an effect in human
airways has not been determined.

4. Role in asthma.
a. RELEASE. Although the role of bradykinin in asthma

is still not clear, the development of potent, stable, B2
receptor antagonists offers the possibility of soon clari-
fying the role of bradykinin in airway disease (Burch et
al., 1990). Bradykinin is generated in asthmatic airways
by the action of various kininogenases (generated in the
inflammatory response) on HMW kininogen present in
the exuded plasma and on LMW kininogens secreted in
the airways. Bradykinin has been detected in bronchoal-

veolar lavage fluid from asthmatic patients (Chris-
tiansen et al., 1992). The degradation of bradykinin in
the airways may be impaired when NEP is down-regu-
lated in asthmatic airways or epithelial shedding occurs
(Nadel, 1991). In experimental animals, aerosol expo-
sure to IL-1b markedly increases the bronchoconstric-
tion response to bradykinin (Tsukagoshi et al., 1994a),
and this may be the result of reduced expression of NEP
in the airways (Tsukagoshi et al., 1995).

b. RELEVANT EFFECTS. Asthmatic patients are hyper-
reactive to inhaled bradykinin; this is related to the
degree of eosinophilic inflammation in the airways (Ro-
isman et al., 1996). Bradykinin has many effects on the
airways that are relevant to asthma. Perhaps the most
important property of bradykinin is its ability to activate
nociceptive nerve fibers in the airway, because these
may mediate the cough and chest tightness that are
such characteristic symptoms of asthma. This effect of
bradykinin may be enhanced by hyperesthesia of sen-
sory nerves in the airways that have been sensitized by
inflammatory mediators. Inhalation of bradykinin by
asthmatic patients rather closely mimics an asthma at-
tack; in addition to wheezing, patients experience chest
tightness, coughing, and sometimes itching under the
chin, which are common sensory manifestations during
asthma exacerbation. Bradykinin is also a potent bron-
choconstrictor in asthmatic patients, and after allergen
challenge there is a disproportionate increase in respon-
siveness to bradykinin, compared with methacholine,
which may not be maximal until several days after al-
lergen challenge and may persist for several days (Ber-
man et al., 1995). This may be a reflection of airway
sensory nerve hyperesthesia. In patients with perennial
rhinitis, there is a marked increase in the response to
topically applied bradykinin, with evidence of enhanced
reflex effects (Baraniuk et al., 1994).

c. EFFECTS OF INHIBITORS. The contribution of brady-
kinin to asthma can only be determined with the use of
potent and specific bradykinin antagonists, which are
now in clinical development. Such agents are predicted
to be effective in symptom control, but it is not clear
whether they might also have anti-inflammatory effects.
One antagonist, [D-Arg0,Hyp3,D-Phe7]-bradykinin
(NPC567), was unable to inhibit the effect of bradykinin
on nasal secretions, even when administered at the
same time as bradykinin (Pongracic et al., 1991), pre-
sumably because of rapid local metabolism. Icatibant
(HOE 140, [D-Arg0,Hyp3,Thi6,D-Tic7,Oic8]-bradykinin) is
a selective B2 receptor antagonist that not only is potent
but also has a long duration of action in animals in vivo,
because it is resistant to enzymatic degradation (Hock et
al., 1991; Wirth et al., 1991). This antagonist is potent in
inhibiting the bronchoconstriction and microvascular
leakage responses to bradykinin (Wirth et al., 1993;
Sakamoto et al., 1992) and the effect of bradykinin on
airway sensory nerves (Miura et al., 1992). Clinical stud-
ies with icatibant are limited, but there is some evidence
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that nasal application reduces the nasal blockage in-
duced by allergen in patients with allergic rhinitis (Aus-
tin et al., 1994). In a clinical study of nebulized icatibant
treatment of asthma, there was a small improvement in
airway function tests after 4 weeks of treatment but no
improvement in asthma symptoms (Akbary et al., 1996).
Recently, nonpeptide antagonists have been identified.
WIN 64338 is a nonpeptide B2 receptor antagonist that
has been shown to block the bronchoconstricting action
of bradykinin in airway smooth muscle in vitro (Scherrer
et al., 1995). More potent nonpeptide antagonists, such
as FR167344, have been developed and have clinical
potential (Inamura et al., 1997). Although FR167344 is
not very potent, it may lead to the future development of
more potent nonpeptide drugs.

B. Tachykinins

Airway sensory nerves have the capacity to release
neuropeptides, particularly the tachykinins SP and
NKA, as well as CGRP, which may have proinflamma-
tory effects in the airway. Because airway sensory
nerves are activated in asthma, this has suggested that
the release of sensory neuropeptides may contribute to
the inflammatory response in asthma (Barnes, 1995a).

1. Synthesis and metabolism. SP and NKA, but not
NKB, are localized to sensory nerves in the airways of
several species (Barnes et al., 1991; Joos et al., 1994;
Uddman et al., 1997). SP-immunoreactive nerves are
abundant in rodent airways but are sparse in human
airways (Martling et al., 1987; Laitinen et al., 1992;
Komatsu et al., 1991). Rapid enzymatic degradation of
SP in airways, and the fact that SP concentrations may
decrease with age and possibly with cigarette smoking,
could explain the difficulty in demonstrating this pep-
tide in some studies. SP-immunoreactive nerves in the
airway are found beneath and within the airway epithe-
lium, around blood vessels, and, to a lesser extent,
within airway smooth muscle. SP-immunoreactive
nerves fibers also innervate parasympathetic ganglia,
suggesting a sensory input that may modulate gangli-
onic transmission and thus result in local reflexes. SP in
the airways is localized predominantly to capsaicin-sen-
sitive unmyelinated nerves, but chronic administration
of capsaicin only partially depletes the lung of tachy-
kinins, indicating the presence of a population of
capsaicin-resistant SP-immunoreactive nerves, as in the
gastrointestinal tract (Dey et al., 1991). Similar capsa-
icin denervation studies are not possible in human air-
ways, but after extrinsic denervation during heart-lung
transplantation there appears to be a loss of SP-immu-
noreactive nerves in the submucosa (Springall et al.,
1990). Tachykinins are derived from preprotachykinins
(PPTs) that are expressed in nodose and jugular ganglia.
There are three PPT genes; a-PPT codes for SP alone,
b-PPT codes for SP and NKA, and g-PPT codes for SP,
NKA, and a novel, amino-terminally extended form of
NKA termed NP-g. Synthesis may be partly determined

by local inflammation in the airways, because allergen
exposure increases the expression of PPT mRNA in no-
dose ganglia of guinea pigs (Fischer et al., 1996). There
is some evidence that tachykinins may be synthesized in
nonneuronal cells, such as macrophages. Human mac-
rophages express a-PPT, and SP is released from these
cells by capsaicin (Ho et al., 1997). In rat alveolar mac-
rophages, a-PPT mRNA and SP-like immunoreactivity
are expressed in response to inflammatory stimuli, sug-
gesting that this may result in increased SP release in
inflammatory diseases (Killingsworth et al., 1997).

Tachykinins are subject to degradation by at least two
enzymes, ACE and NEP (Nadel, 1991). ACE is predom-
inantly localized to vascular endothelial cells and there-
fore breaks down intravascular peptides. ACE inhibi-
tors, such as captopril, enhance bronchoconstriction
resulting from intravenous administration of SP (Shore
et al., 1988; Martins et al., 1990) but not inhalation of SP
(Lötvall et al., 1990b). NKA is not a good substrate for
ACE, however. NEP appears to be the most important
enzyme for the breakdown of tachykinins in tissues.
Inhibition of NEP by phosphoramidon or thiorphan
markedly potentiates bronchoconstriction in vitro in an-
imal airways (Sekizawa et al., 1987) and human airways
(Black et al., 1988) and after inhalation in vivo (Lötvall
et al., 1990b). NEP inhibition also potentiates mucus
secretion in response to tachykinins in human airways
(Rogers et al., 1989). NEP inhibition enhances excitatory
NANC and capsaicin-induced bronchoconstriction, re-
sulting from the release of tachykinins from airway sen-
sory nerves (Frossard et al., 1989; Djokic et al., 1989).
The activity of NEP in the airways appears to be an
important factor determining the effects of tachykinins;
any factors that inhibit the enzyme or its expression
may be associated with increased effects of exogenously
applied or endogenously released tachykinins. Several of
the stimuli known to induce bronchoconstriction re-
sponses in asthmatic patients have been found to reduce
the activity of airway NEP (Nadel, 1991).

2. Receptors. At least three subtypes of tachykinin
receptors have been characterized pharmacologically by
the rank order of potency of agonists, by the develop-
ment of selective antagonists, and by molecular cloning
(Nakanishi, 1991). SP acts preferentially at NK1 recep-
tors, NKA at NK2 receptors, and NKB at NK3 receptors.
Tachykinin receptors are differentially expressed and
are also subject to differential regulation, for example by
inflammatory stimuli. Tachykinins are typical G pro-
tein-coupled receptors and lead to increased PI hydroly-
sis, with an increase in the release of intracellular Ca21,
IP3, and diacylglycerol. Tachykinin receptors in the air-
ways have been mapped using autoradiographic tech-
niques and labeled tachykinins (Carstairs and Barnes,
1986; Walsh et al., 1994; Strigas and Burcher, 1996;
Miyayasu et al., 1993; Zhang et al., 1995). NK1 receptors
are localized to bronchial vessels, epithelial cells, and
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submucosal glands, whereas NK2 receptors are predom-
inantly localized to airway smooth muscle.

3. Effects on airways. Tachykinins have many differ-
ent effects on the airways that may be relevant to
asthma, and these effects are mediated by NK1 and NK2
receptors. There is little evidence for the involvement of
NK3 receptors.

a. AIRWAY SMOOTH MUSCLE. Tachykinins constrict hu-
man airway smooth muscle in vitro via NK2 receptors
(Naline et al., 1989; Advenier et al., 1992b; Sheldrick et
al., 1995). The contractile response to NKA is signifi-
cantly greater in smaller human bronchi than in more
proximal airways, indicating that tachykinins may have
a more important constricting effect in peripheral air-
ways (Frossard and Barnes, 1991), whereas cholinergic
constriction tends to be more pronounced in proximal
airways. This is consistent with the autoradiographic
distribution of tachykinin receptors, showing distribu-
tion to small and large airways (Carstairs and Barnes,
1986). NP-g is also a potent constrictor of human air-
ways and acts via NK2 receptors (Burcher et al., 1991).
In vivo, SP does not cause bronchoconstriction or cough
when administered either by intravenous infusion
(Fuller et al., 1987c; Evans et al., 1988) or by inhalation
(Fuller et al., 1987c; Joos et al., 1987), whereas NKA
causes bronchoconstriction in asthmatic subjects after
both intravenous administration (Evans et al., 1988) and
inhalation (Joos et al., 1987). Inhalation of SP increases
airway responsiveness to methacholine in asthmatic
subjects, an effect that has been ascribed to airway
edema (Cheung et al., 1995). Mechanical removal of
airway epithelium potentiates the bronchoconstriction
response to tachykinins (Frossard et al., 1989; Devillier
et al., 1988), largely because epithelial NEP is removed.

b. VESSELS. Tachykinins have potent effects on airway
blood flow. Indeed, the effects of tachykinins on airway
blood flow may be the most important physiological and
pathophysiological effects of tachykinins in airways. In
canine and porcine trachea, both SP and NKA cause
marked increases in blood flow (Salonen et al., 1988;
Matran et al., 1989). Tachykinins also dilate canine
bronchial vessels in vitro, probably via an endothelium-
dependent mechanism (McCormack et al., 1989b).
Tachykinins also regulate bronchial blood flow in pigs;
stimulation of the vagus nerve causes vasodilation me-
diated by the release of sensory neuropeptides, and it is
likely that CGRP as well as tachykinins are involved
(Matran et al., 1989).

Stimulation of the vagus nerve in rodents causes mi-
crovascular leakage, which is prevented by prior treat-
ment with capsaicin or a tachykinin antagonist, indicat-
ing that release of tachykinins from sensory nerves
mediates this effect. Among the tachykinins, SP is most
potent at causing leakage in guinea pig airways (Rogers
et al., 1988), and NK1 receptors have been localized to
postcapillary venules in the airway submucosa (Sertl et
al., 1988). Inhaled SP also causes microvascular leakage

in guinea pigs, and its effect on the microvasculature is
more marked than its effect on airway smooth muscle
(Lötvall et al., 1990a). It is difficult to measure airway
microvascular leakage in human airways, but SP causes
weals in human skin when injected intradermally, indi-
cating its capacity to cause microvascular leakage in
human postcapillary venules; NKA is less potent, indi-
cating that an NK1 receptor mediates this effect (Fuller
et al., 1987a).

c. SECRETIONS. In vitro, SP stimulates mucus secretion
from submucosal glands (mediated by NK1 receptors) in
ferret and human airways (Rogers et al., 1989; Ram-
narine et al., 1994; Meini et al., 1993) and is a potent
stimulant of goblet cell secretion in guinea pig airways
(Kuo et al., 1990). Indeed, SP is likely to mediate the
increases in goblet cell discharge after vagus nerve stim-
ulation and exposure to cigarette smoke (Tokuyama et
al., 1990; Kuo et al., 1992a).

d. NERVES. In guinea pig trachea, tachykinins also
potentiate cholinergic neurotransmission at postgangli-
onic nerve terminals, and an NK2 receptor appears to be
involved (Hall et al., 1989). There is also potentiation at
the ganglionic level (Undem et al., 1991; Watson et al.,
1993), which appears to be mediated by a NK1 receptor
(Watson et al., 1993). There is evidence that NK3 recep-
tors may also be involved (Myers and Undem, 1993).
Endogenous tachykinins may also facilitate cholinergic
neurotransmission, because capsaicin pretreatment re-
sults in a significant reduction in cholinergic neural
responses both in vitro and in vivo (Martling et al., 1984;
Stretton et al., 1992). However, in human airways there
is no evidence for a facilitatory effect on cholinergic
neurotransmission (Belvisi et al., 1994), although such
an effect has been reported in the presence of potassium
channel blockers (Black et al., 1990). In conscious guinea
pigs, very low concentrations of inhaled SP are reported
to cause cough, and this effect is potentiated by NEP
inhibition (Kohrogi et al., 1988). Citric acid-induced
cough and airway hyperresponsiveness are blocked by a
nonpeptide NK2 receptor antagonist (SR 48968), sug-
gesting the involvement of NK2 receptors, although
these may be centrally located (Advenier et al., 1992a;
Girard et al., 1996).

e. INFLAMMATORY CELLS. Tachykinins may also inter-
act with inflammatory and immune cells (Daniele et al.,
1992), although whether this is of pathophysiological
significance remains to be determined. SP degranulates
certain types of mast cells, such as those in human skin
(although this effect is not mediated by a tachykinin
receptor) (Lowman et al., 1988); however there is no
evidence that tachykinins degranulate lung mast cells
(Ali et al., 1986). SP has a degranulating effect on eosin-
ophils (Kroegel et al., 1990), but this is not mediated by
a tachykinin receptor. At lower concentrations, tachyki-
nins have been reported to enhance eosinophil chemo-
taxis (Numao and Agrawal, 1992). Tachykinins may ac-
tivate alveolar macrophages (Brunelleschi et al., 1990)
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and monocytes to release inflammatory cytokines, such
as IL-6 (Lötz et al., 1988). Topical application of SP to
human nasal mucosa results in increased expression of
several cytokines, suggesting that SP may have impor-
tant chronic immunological effects (Okamoto et al.,
1995). Tachykinins and vagus nerve stimulation also
cause transient vascular adhesion of neutrophils in the
airway circulation (Umeno et al., 1989) and in human
skin (Smith et al., 1993).

SP stimulates proliferation of blood vessels (angiogen-
esis) (Fan et al., 1993) and may therefore be involved in
the new vessel formation that is found in asthmatic
airways. SP and NKA also stimulate the proliferation
and chemotaxis of human lung fibroblasts, suggesting
that tachykinins may contribute to the fibrotic process
in chronic asthma (Harrison et al., 1995). These effects
appear to be mediated by both NK1 and NK2 receptors.

4. Role in asthma. In rodents, there is now consider-
able evidence for neurogenic inflammation in airways
resulting from antidromic release of neuropeptides from
nociceptive nerves or C-fibers, via an axon reflex, and
this process may contribute to the inflammatory re-
sponse in asthma (Barnes, 1986).

a. RELEASE. Quantitative studies in humans indicate
that SP-immunoreactive fibers constitute only 1% of the
total number of intraepithelial fibers, whereas in guinea
pigs they comprise 60% of the fibers (Bowden and Gib-
bins, 1992). A striking increase in SP-immunoreactive
nerves was reported in the airways of patients with fatal
asthma (Ollerenshaw et al., 1991), but this finding has
not been confirmed in biopsies from patients with milder
asthma (Howarth et al., 1995) and there is no increase in
the SP content of lungs from asthmatics (Lilly et al.,
1995). After nasal challenge with allergen, an increase
in the SP content in nasal lavage fluid has been reported
(Mosiman et al., 1993). Elevated concentrations of SP in
bronchoalveolar lavage fluid from patients with asthma
have been reported, with an additional increase after
allergen challenge (Nieber et al., 1992), suggesting that
there may be an increase in the SP content in the air-
ways of asthmatic patients. Similarly, SP has been de-
tected in the sputum of asthmatic patients after inhala-
tion of hypertonic saline solution (Tomaki et al., 1995).
Allergen challenge is associated with a doubling of the
number of PPT-A mRNA-positive neurons in nodose
ganglia of guinea pigs and an increase in SP and CGRP
immunoreactivity in the lungs (Fischer et al., 1996).

b. RELEVANCE IN ASTHMA. Sensory nerves may be ac-
tivated in airway disease. In asthmatic airways the ep-
ithelium is often shed, thereby exposing sensory nerve
endings. Sensory nerves in asthmatic airways may be
“hyperalgesic” as a result of exposure to inflammatory
mediators such as PGs and certain cytokines (such as
IL-1b, TNF-a, and nerve growth factor) and may then be
activated more readily by other mediators, such as ki-
nins. In animals, capsaicin has been used as a tool to
explore the release of sensory neuropeptides. In hu-

mans, capsaicin inhalation causes cough and transient
bronchoconstriction, which is inhibited by cholinergic
blockade and is probably attributable to a laryngeal
reflex (Fuller et al., 1985; Midgren et al., 1992). This
suggests that neuropeptide release does not occur in
human airways, although it is possible that insufficient
capsaicin reaches the lower respiratory tract because
the dose is limited by coughing. There is no evidence
that capsaicin induces a greater degree of bronchocon-
striction in patients with asthma than in normal indi-
viduals (Fuller et al., 1985).

In contrast to studies in rodents, the NEP inhibitor
acetorphan has no effect on base-line airway caliber or
on bronchoconstriction induced by a “neurogenic” trigger
(sodium metabisulfite) in human subjects (Nichol et al.,
1992). The lack of effect could be the result of inadequate
inhibition of NEP in the airways, particularly at the
level of the epithelium. Nebulized thiorphan has been
shown to potentiate the bronchoconstriction response to
inhaled NKA in normal and asthmatic subjects (Cheung
et al., 1992a,b), but there is no effect on base-line lung
function in asthmatic patients (Cheung et al., 1992b),
indicating that there is unlikely to be basal release of
tachykinins. It is possible that NEP may become dys-
functional after viral infections or exposure to oxidants,
thus contributing to asthma exacerbations (Nadel,
1991).

There is evidence that NK1 receptor gene expression
might be increased in the lungs of asthmatic patients
(Adcock et al., 1993). This might be the result of in-
creased transcription in response to activation of tran-
scription factors, such as AP-1, which are activated in
human lung by cytokines such as TNF-a. Expression of
NK2 receptors has also been described in asthma (Bai
and Bramley, 1993).

c. EFFECTS OF INHIBITORS. There have recently been
several studies of tachykinin antagonists in asthma. The
relatively weak, nonselective, tachykinin antagonist
FK-224 had an inhibitory effect on bradykinin-induced
bronchoconstriction in asthma (Ichinose et al., 1992),
although this finding was not confirmed in another
study (Schmidt et al., 1996). A more potent NK1 receptor
antagonist, FK-888, reduced the duration of exercise-
induced asthma but had no effect on maximal broncho-
constriction, suggesting an effect on blood vessels rather
than airway smooth muscle (Ichinose et al., 1996). How-
ever, another potent NK1 receptor antagonist, CP
99,994, had no effect on hypertonic saline solution-
induced bronchoconstriction or on cough (Fahy et al.,
1995).

Apart from tachykinin receptor antagonists, neuro-
genic inflammation may be modulated by either pre-
venting the activation of sensory nerves or preventing
the release of neuropeptides. Many drugs act on prejunc-
tional receptors to inhibit the release of neuropeptides
(Barnes et al., 1990). Opioids are the most effective
inhibitors, but an inhaled, peripherally acting, m-opioid
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agonist (the pentapeptide BW443C) was found to be
ineffective in inhibiting metabisulfite-induced broncho-
constriction, which is believed to occur via neural mech-
anisms (O’Connor et al., 1991).

d. CONCLUSIONS. Tachykinins are increased in the se-
cretions of asthmatic patients and may be produced by
sensory nerves, although there is increasing evidence
that inflammatory cells, such as macrophages, may re-
lease SP. Tachykinins are potent bronchoconstrictors
(acting via NK2 receptors) and stimulate mucus secre-
tion, plasma exudation, neural activation, and struc-
tural changes (via NK1 receptors). However, the nega-
tive results obtained with tachykinin antagonists in
asthma suggest that neurogenic inflammation is un-
likely to play a major role, at least in mild asthma. It is
possible that sensory neuropeptides play a role in more
severe asthma, and further studies are needed.

C. Calcitonin Gene-Related Peptide

1. Synthesis and metabolism. CGRP-immunoreactive
nerves are abundant in the respiratory tract of several
species, and CGRP is stored and localized with SP in
afferent nerves. CGRP has been extracted from and is
localized to human airways (Palmer et al., 1987; Kom-
atsu et al., 1991). CGRP is found in trigeminal, nodose-
jugular, and dorsal root ganglia and has also been de-
tected in neuroendocrine cells of the lower airways
(Uddman et al., 1997).

The metabolism of CGRP is less clear, although NEP
inhibitors increase some of the effects of CGRP in the
airways (Katayama et al., 1991). Interestingly, metabo-
lism of CGRP by NEP appears to liberate a peptide
fragment that has eosinophil chemotactic activity (Da-
vies et al., 1992).

2. Receptors. CGRP acts on specific receptors that are
coupled (via Gs) to adenylyl cyclase, resulting in an
increase in intracellular cyclic AMP concentrations.
Subtypes of CGRP receptors have been proposed, based
on the selectivity of different CGRP analogues and the
related peptide amylin (Poyner, 1992). CGRP receptors
have been mapped autoradiographically in human air-
ways and are predominantly located in bronchial vascu-
lar smooth muscle, rather than airway epithelium (Mak
and Barnes, 1988).

3. Effects on airways.
a. AIRWAY SMOOTH MUSCLE. CGRP causes constriction

of human bronchi in vitro (Palmer et al., 1987). This is
surprising, because CGRP increases cyclic AMP levels.
There are few, if any, CGRP receptors in airway smooth
muscle in human or guinea pig airways, and this sug-
gests that the paradoxical bronchoconstriction response
reported in human airways may be mediated indirectly.
In guinea pig airways, CGRP has no consistent effect on
tone (Martling et al., 1988). The variable effects of CGRP
on airways may be explained by the fact that CGRP may
release other mediators that have effects on tone. CGRP
may release both NO and ET in airways, so that its

effects would depend on the balance between these bron-
chodilating and bronchoconstricting mediators (Ni-
nomiya et al., 1996).

b. VESSELS. CGRP is a potent vasodilator that has
long-lasting effects. CGRP is an effective dilator of hu-
man pulmonary vessels in vitro and acts directly on
receptors in vascular smooth muscle (McCormack et al.,
1989a). It also potently dilates bronchial vessels in vitro
(McCormack et al., 1989a) and produces a marked and
long-lasting increase in airway blood flow in vivo in
anesthetized dogs (Salonen et al., 1988) and conscious
sheep (Parsons et al., 1992a). It is possible that CGRP
may be the predominant mediator of arterial vasodila-
tion and increased blood flow in response to sensory
nerve stimulation in the bronchi (Matran et al., 1989).
There are high densities of CGRP receptors in bronchial
vessels in human airways (Mak and Barnes, 1988), sug-
gesting that CGRP may be an important mediator of
airway hyperemia in asthma. CGRP has no direct effect
on airway microvascular leakage (Rogers et al., 1988).
CGRP may potentiate the leakage produced by SP by
increasing blood delivery to the sites of plasma extrav-
asation in the postcapillary venules; this has been seen
in rat airways (Brokaw and White, 1992). This does not
occur in guinea pig airways when CGRP and SP are
coadministered, possibly because blood flow in the air-
ways is already high (Rogers et al., 1988).

c. SECRETIONS. CGRP has a weak inhibitory effect on
cholinergically stimulated mucus secretion in ferret tra-
chea (Webber et al., 1991) and on goblet cell discharge in
guinea pig airways (Kuo et al., 1990), whereas it in-
creases secretion in feline submucosal glands (Nagaki et
al., 1994). There are low densities of CGRP receptors on
mucus secretory cells (Mak and Barnes, 1988), but this
finding does not eliminate the possibility that CGRP
might increase mucus secretion in vivo by increasing
blood flow to submucosal glands.

d. INFLAMMATORY CELLS. CGRP injection into human
skin causes a persistent flare, but biopsies have revealed
an infiltration of eosinophils (Pietrowski and Foreman,
1986). CGRP itself does not appear to be chemotactic for
eosinophils, but proteolytic fragments of the peptide are
active (Davies et al., 1992), suggesting that CGRP re-
leased into the tissues may lead to eosinophilic infiltra-
tion. CGRP inhalation induces eosinophilic inflamma-
tion in rat lungs (Bellibas, 1996). In contrast, CGRP
inhibits macrophage secretion and the capacity of mac-
rophages to activate T lymphocytes (Nong et al., 1989),
suggesting potential anti-inflammatory actions. CGRP
also induces proliferation of guinea pig airway epithelial
cells and may therefore be involved in healing the air-
way after epithelial shedding in asthma (White et al.,
1993).

4. Role in asthma. To date there is little evidence for
the involvement of CGRP in asthma. Its most prominent
action is prolonged vasodilation, so it may contribute to
the hyperemia of asthmatic airways. There are currently
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no antagonists that are suitable for clinical use, so it is
difficult to evaluate the role of CGRP in asthma

D. Endothelins

ETs are potent constrictor peptides that were origi-
nally described as vasoconstrictors released from endo-
thelial cells. There is now considerable circumstantial
evidence that they are involved in the pathophysiologi-
cal mechanisms of asthma (Barnes, 1994b; Hay et al.,
1996).

1. Synthesis and metabolism. There are three ET pep-
tides, and each is encoded by a distinct gene (Inoue et al.,
1989), which codes for the precursor peptide. Prepro-
ET-1 is cleaved to a 38-amino acid intermediate form
termed big ET-1 or pro-ET-1. Pro-ET-1 is rapidly cleaved
by a specific enzyme, termed ET-converting enzyme
(ECE), to form mature ET-1. ECE is a neutral met-
alloendopeptidase and is inhibited by phosphoramidon
(Ikegawa et al., 1990). Mast cell chymase may also
cleave pro-ET-1 (Wypij et al., 1992). The human prepro-
ET-1 gene is on chromosome 6, and its upstream regu-
latory region reveals multiple regulatory elements, indi-
cating that several factors may regulate its expression
(Masaki et al., 1992). Several proinflammatory cyto-
kines, including transforming growth factor (TGF)-b,
TNF-a, and IL-1b, may increase expression of ET-1.
Less is known regarding the synthetic pathways and
regulation of ET-2 and ET-3.

ETs may be stored within cells but are predominantly
synthesized upon cell activation; secretion of ETs is
therefore largely regulated at the level of peptide syn-
thesis. Although ET-1 was first described in endothelial
cells, it is now apparent that ETs can be synthesized by
many different cell types, including several types of air-
way cells. ET-3 is relatively abundant in neuronal tis-
sues and may be a neuronal ET form. ET-like immuno-
reactivity is localized to airway epithelium in human
airways, with intense staining in goblet and Clara cells
but only intermittent staining in ciliated epithelial cells
(Giaid et al., 1991). Specific antibodies have localized
ET-1, pro-ET-1, ET-3, and pro-ET-3 to airway epithelial
cells and submucosal glands in human lung (Marciniak
et al., 1992). ECE has been reported in bovine lung
membranes (Kundu and Wilson, 1992), and guinea pig
lung is reported to synthesize and degrade ET-1 (Nogu-
chi et al., 1991). The presence of pro-ETs and mRNA for
prepro-ETs in lung suggests that ETs are synthesized
locally within lung cells. Furthermore, ET-1 is detect-
able in cultured human epithelial cells (Black et al.,
1989b; Mattoli et al., 1990). ET-1 synthesis and release
from epithelial cells are stimulated by endotoxin and by
several proinflammatory cytokines (IL-1b, TNF-a, and
IL-6), which may be released from macrophages (Endo et
al., 1992). Human alveolar macrophages have also been
identified as a source of ETs (Ehrenreich et al., 1990),
and these cells may be activated in asthmatic patients
by exposure to allergens via low affinity IgE receptors.

ETs are metabolized by NEP, which is localized in
several cell types in airways, especially airway epithe-
lium. Inhibition of NEP with phosphoramidon increases
the potency of ETs in guinea pigs in vivo (Boichot et al.,
1991) and in human airways in vitro (Candenas et al.,
1992).

2. Receptors. Pharmacological responses to ETs are
mediated by at least two receptor subtypes. Two distinct
receptors, with structures typical of G protein-coupled
receptors, have been cloned; they exhibit approximately
60% homology (Masaki et al., 1992). For the ETA recep-
tor, the rank order of potency is ET-1 . ET-2 .. ET-3
and the binding affinity for ET-1 is approximately 100
times greater than that for ET-3. ETB receptors show
similar affinities for all three ETs and for the related
sarafotoxins. The distinction between ETA and ETB re-
ceptors has been confirmed with the development of
selective agonists and antagonists. Although the exis-
tence of a third ET receptor, which is selective for ET-3
(ETC receptor), has been proposed (Masaki et al., 1992),
there is little conclusive evidence for this in human
tissues. Radioligand binding studies and in situ hybrid-
ization studies with receptor cDNA probes have demon-
strated that ET receptors are widely distributed, in
keeping with the multiple actions of these peptides. ETA
and ETB receptors are expressed in lung and are differ-
entially distributed (Nakamichi et al., 1992). Selective
ETA and ETB agonists and antagonists have greatly
aided the study of receptor subtype expression. BQ-123,
FR-139317, and PD 145065 are selective ETA receptor
antagonists, whereas IRL 1038 is a selective antagonist
of ETB receptors.

Autoradiographic studies with 125I-ET-1 and selective
antagonists have shown a widespread distribution of
ETA and ETB receptors in human airways, with a pre-
dominance of ETB receptors in airway smooth muscle
(Knott et al., 1995). There is no difference in receptor
distribution in airways from asthmatic patients, com-
pared with airways from normal subjects (Goldie et al.,
1995).

3. Effects on airways.
a. AIRWAY SMOOTH MUSCLE. ET-1 and ET-2 are potent

constrictors of human airway smooth muscle in vitro,
being even more potent than LTD4 (Advenier et al.,
1990; Henry et al., 1990; McKay et al., 1991b; Takahashi
et al., 1997; Goldie et al., 1995). The contractile response
is slow in onset and sustained, and ET-1 appears to
cause a maximal contractile response. The contractile
response in human airways is unaffected by calcium
antagonists or (in contrast to other species) COX inhib-
itors or LT antagonists (McKay et al., 1991a; Nally et al.,
1994), suggesting a direct effect on airway smooth mus-
cle. This is consistent with the demonstration of ET
binding sites on human airway smooth muscle, using
autoradiography (Henry et al., 1990; McKay et al.,
1991b; Brink et al., 1991; Goldie et al., 1995; Knott et al.,
1995). ET-1 may produce a prolonged contractile re-
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sponse in human airway smooth muscle by activating
PKC, because the PKC inhibitor staurosporine reduces
the constricting effect of ET-1 (McKay et al., 1996). ET-3
is less potent that ET-1 or ET-2 (Advenier et al., 1990;
Hay et al., 1993), but the potency differences are com-
plicated by differential metabolism. Mechanical removal
of airway epithelium potentiates the constricting effects
of ETs, but the effect is greater for ET-3 than for ET-1
(Candenas et al., 1992; McKay et al., 1992). After epi-
thelium removal or phosphoramidon treatment, the po-
tencies of ET-1, ET-2, and ET-3 are similar, suggesting
that any differences in previous studies were the result
of more rapid degradation of ET-3 by epithelial NEP.
ET-3-mediated contraction of human airways is partly
reduced by COX inhibition (Nally et al., 1994).

The ETA antagonists BQ-123, FR-139317, and PD
145065 have no inhibitory effect on ET-induced constric-
tion, suggesting that ETB receptors mediate the direct
constriction response, and this is supported by the con-
striction response to the ETB-selective agonists BQ-3020
and IRL1620 (Hay et al., 1993; Takahashi et al., 1997).
Asthmatic airways show a similar, or even reduced,
response to ETB-selective agonists, compared with nor-
mal airways (Goldie et al., 1995). Interestingly, the re-
lease of prostanoids (predominantly PGD2 and PGE2)
induced by ET-1 in human airways appears to be medi-
ated by an ETA receptor, because this is effectively in-
hibited by BQ-123 (Hay et al., 1993). Inhaled ET-1 is a
potent bronchoconstrictor (approximately 100-fold more
potent than methacholine) in asthmatic patients and
causes a bronchoconstriction response that lasts for .1
h, whereas ET-1 has no effect in normal subjects
(Chalmers et al., 1997a).

ET-1 increases proliferation of rabbit and sheep cul-
tured airway smooth muscle cells (Noveral et al., 1992;
Glassberg et al., 1994; Carratu et al., 1997), and this
appears to be via stimulation of the extracellular signal-
regulated kinase/MAP kinase pathway (Whelchel et al.,
1997). ET-1 alone has no effect on cultured human air-
way smooth muscle cells but markedly amplifies the
proliferative effects of growth factors, such as epidermal
growth factor (EGF); this is mediated by an ETA recep-
tor (Panettieri et al., 1996).

b. VESSELS. ET-1 constricts human bronchial arteries
in vitro (McKay et al., 1991a), but its effects on airway
microvascular leakage are conflicting. ET-1 causes an
increase in plasma extravasation in rat trachea (Sirois et
al., 1992) and this response is dependent on leukocytes
(Helset et al., 1993), whereas ET-1 is without effect on
plasma extravasation in guinea pigs (Macquin-Mavier et
al., 1989). This may reflect relative vasoconstricting ef-
fects on precapillary arterioles versus direct effects on
endothelial cells of postcapillary venules.

c. SECRETION. ET-1, but not ET-2 or ET-3, stimulates
mucus glycoprotein secretion from feline airway submu-
cosal glands via a direct mechanism that involves cal-
cium ion influx, suggesting that ETA receptors are in-

volved (Shimura et al., 1992). ET-1 also stimulates ion
transport in cultured airway epithelial cells (Wong et al.,
1990).

d. NERVES. ETs bind to parasympathetic ganglia and
nerves in rat and rabbit airways (Turner et al., 1989;
Power et al., 1989; McKay et al., 1993), suggesting that
ET-3 may have an effect on cholinergic neurotransmis-
sion. ET-3 enhances neurotransmission in postgangli-
onic cholinergic nerves in rabbit airways via a direct
effect on prejunctional receptors on postganglionic cho-
linergic nerves (McKay et al., 1993). This suggests that
ETs may potentiate cholinergic reflex bronchoconstric-
tion and this effect is mediated by an ETB receptor. The
ETB-selective agonist sarafotoxin S6C enhances cholin-
ergic nerve-induced contraction of human airways in
vitro, indicating the presence of ETB receptors on cho-
linergic nerves as well as airway smooth muscle (Fer-
nandes et al., 1996).

e. INFLAMMATORY CELLS. It is not yet certain whether
ETs have inflammatory effects in the airways. Intrave-
nously administered or inhaled ET-1 has no effect on
inflammatory cell influx in guinea pigs (Macquin-
Mavier et al., 1989), and there is no increase in airway
responsiveness to other spasmogens (Lagente et al.,
1989). ETs may increase the release of inflammatory
mediators from a variety of cells. ET-1 increases the
release of lipid mediators from cultured human nasal
mucosa (Wu et al., 1992) and increases superoxide for-
mation and TNF-a release in alveolar macrophages
(Haller et al., 1991; Chanez et al., 1996). ET-1 also re-
leases histamine from guinea pig lung, but not perito-
neal, mast cells (Uchida et al., 1992). In a cultured
human epithelial cell line, ET-1 induces the release of
the cytokines IL-6, IL-8, and GM-CSF (Mullol et al.,
1996).

ET-1 potently stimulates collagen secretion from pul-
monary fibroblasts (Peacock et al., 1992) and may there-
fore be involved in the increased collagen formation ob-
served in asthmatic airways. ET-1 is reported to
increase fibronectin gene expression and protein release
in human airway epithelial cells (Marini et al., 1996).

4. Role in asthma.
a. RELEASE. There is increased formation of ETs in

asthma. Elevated concentrations of ET-1 have been de-
tected in bronchoalveolar lavage fluid from asthmatic
patients (Mattoli et al., 1991; Sofia et al., 1993; Reding-
ton et al., 1995), and these are reduced after treatment
with steroids (Vittori et al., 1992). ET-1 is present in
induced sputum, but the levels are not elevated in asth-
matic patients, compared with normal subjects (Chalm-
ers et al., 1997b). An increase in the concentration of
plasma ET-1 has been reported in asthmatic children
and adults and is related to asthma severity (Aoki et al.,
1994; Chen et al., 1995), although another study showed
no increase in plasma ET-1 levels in patients with mild
asthma (Chalmers et al., 1997b). Furthermore, in pa-
tients with nocturnal asthma, there is a significantly
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lower level of ET-1 in bronchoalveolar lavage fluid at
night than during the day (Kraft et al., 1994). There is a
significant increase in the expression of ET-1 immuno-
reactivity in the epithelial layer in fiber-optic bronchial
biopsies from asthmatic patients (Springall et al., 1991).
It is tempting to speculate that this is the result of the
action of proinflammatory cytokines (IL-1b, TNF-a, and
IL-6) released from activated macrophages in asthmatic
airways. Anti-CD23 also induces release of ET-1 in epi-
thelial cells from asthmatic patients, suggesting that
allergen acting via a low affinity IgE receptor (FceRII)
may be a mechanism for releasing ET-1 in asthma
(Campbell et al., 1994). There is also an increase in the
ET-1 content of alveolar macrophages from asthmatic
patients, compared with normal subjects, although
there is no increase in the release of ET-1 after stimu-
lation with lipopolysaccharide (Chanez et al., 1996).

b. EFFECTS OF INHIBITORS. Several nonpeptide antag-
onists have been developed for clinical use (Warner et
al., 1996), but they have not yet been tested in asthmatic
patients. Because bronchoconstriction is mediated by
ETB receptors but the remodeling effects are mediated
by ETA receptors, it is likely that a nonselective antag-
onist would be preferable. Potent nonpeptide antago-
nists, such as SB217242, have been developed and may
be more suitable as drugs. If the major effect of ETs is in
tissue remodeling, it may be difficult to test the efficacy
of such compounds, because very prolonged studies may
be needed. In a guinea pig model of asthma, the early
and late responses to inhaled allergen are reduced by ET
receptor antagonists; the early bronchoconstriction re-
sponse is blocked by ETB receptor antagonists, whereas
the late inflammatory response is reduced by ETA recep-
tor antagonists (Uchida et al., 1996). In mice, an ETA

receptor antagonist but not an ETB receptor antagonist
reduces allergen-induced eosinophilic responses, appar-
ently via an increase in IFN-g release (Fujitani et al.,
1997). This suggests that it might be possible to assess
ET receptor antagonists by measuring allergen-induced
responses. Glucocorticoids inhibit the expression of ET-1
in epithelial cells of asthmatic patients (Vittori et al.,
1992) and in animal lungs (Andersson et al., 1992), sug-
gesting that treatment with inhaled corticosteroids may
reduce ET synthesis in asthma. ET-1 levels in bron-
choalveolar lavage fluid from asthmatic patients treated
with inhaled corticosteroids are lower than those in fluid
from patients not treated with steroids (Redington et al.,
1997a).

c. CONCLUSIONS. ET-1 is abnormally expressed in
asthma and is likely to contribute to its pathophysiolog-
ical mechanism. Although ET-1 is a potent bronchocon-
strictor and induces plasma exudation and mucus secre-
tion, its most striking effect is on airway remodeling. ET
receptor antagonists have been developed for clinical
application and may be useful in the treatment of
asthma, although their benefits may be difficult to as-

sess in clinical trials, because they may affect the long
term progression of asthma.

E. Complement

1. Synthesis and metabolism. The complement system
contains a series of 30 distinct circulating proteins, in-
cluding proteolytic proenzymes, nonenzymatic compo-
nents that form functional enzymes when activated, and
receptors (Ember and Hugli, 1997). The proenzymes be-
come sequentially activated in a cascade that finally
leads to the formation of the so-called terminal attack
sequence, which can promote cell lysis and is central to
our defense against invading microorganisms. However,
there are several by-products generated during the ac-
tivation of the complement cascade that have proinflam-
matory activity and therefore have the potential to be
involved in asthma. The larger fragments of C3 and C4
(i.e., C3b and C4b) are involved in a range of biological
activities, including opsonization, phagocytosis, and im-
munomodulation. There are also several smaller frag-
ments generated during the activation of C5, such as
C3a and C5a, which have been referred to as anaphyla-
toxins and which have several airway effects (Ember
and Hugli, 1997).

2. Receptors. There are distinct receptors for C3a and
C5a, which have been cloned (Ember and Hugli, 1997).
Both are members of the G protein-coupled receptor
superfamily.

3. Effects on airways. C3a and C5a induce airway
smooth muscle contraction and chemotaxis of leuko-
cytes, including eosinophils (Daffern et al., 1995; Regal,
1997). Aerosolization of C5a into the airways induces
transient hyperresponsiveness to inhaled histamine
(Irvin et al., 1986; Armour et al., 1987), an effect that is
partially inhibited by pretreatment with indomethacin
(Berend et al., 1986). Both C3a and C5a are potent
stimulants of eosinophil degranulation (Takafuji et al.,
1996), and the response of circulating eosinophils to C5a
is enhanced after the late response to inhaled allergen in
asthmatic patients (Evans et al., 1996b). C5a is also a
potent chemoattractant of human monocytes and may
therefore be involved in recruitment of macrophages
into asthmatic airways (Pieters et al., 1995).

4. Role in asthma. There have been conflicting reports
regarding changes in the complement cascade in asth-
matic patients (Barnes et al., 1988). An increased
amount of C3a has been demonstrated in the circulation
of asthmatics during exercise-induced bronchoconstric-
tion (Smith et al., 1990), and increased levels of C3a
have been demonstrated in bronchoalveolar lavage fluid
obtained from some, but not all, asthmatics (Van de
Graaf et al., 1992). Furthermore, patients with severe
asthma have been reported to show increased serum
levels of C3a and to exhibit a different pattern of com-
plement activation, compared with patients with bron-
chial infections (Lin et al., 1992). In asthmatic patients,
the neutrophil chemotactic activity of bronchoalveolar
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lavage fluid is largely explained by C5a (Teran et al.,
1997), suggesting that this is an important mediator of
neutrophilic infiltration in asthmatic airways.

Evaluation of the contribution of endogenous activa-
tion of complement to the allergic asthmatic response is
difficult, because there are no selective inhibitors for the
various complement components. However, in experi-
mental animals, treatment with soluble complement re-
ceptor 1, the normal regulator of circulating C1, reduces
allergen-induced bronchoconstriction (Regal et al.,
1993). Treatment of animals with cobra venom factor to
deplete circulating complement components does not in-
hibit allergen-induced eosinophilic infiltration into
lungs, however (Regal and Fraser, 1996).

V. Small Molecules

A. Reactive Oxygen Species

There is increasing evidence that oxidative stress and
reactive oxygen species (ROS) are involved in inflamma-
tory airway diseases, including asthma (Barnes, 1990;
Repine et al., 1997), although relatively few studies have
been undertaken in humans. This is partly because of
the difficulties of measuring oxidative stress in the air-
ways in vivo and partly because of the relative inefficacy
of currently available antioxidants. However, new non-
invasive techniques have been developed to assess oxi-
dative stress in the airways, making it possible to reas-
sess the role of oxidative stress in asthma.

1. Synthesis and metabolism. Many inflammatory and
structural cells that are activated in asthmatic airways,
including eosinophils, macrophages, mast cells, and ep-
ithelial cells, produce ROS (Barnes, 1990). Superoxide
anions are generated by NADPH oxidase and then are
converted to hydrogen peroxide by superoxide dismuta-
ses (SODs). Hydrogen peroxide is then degraded to wa-
ter by catalases. Superoxide and hydrogen peroxide may
interact in the presence of free iron to form the highly
reactive hydroxyl radical. Superoxide may also combine
with NO to form peroxynitrite, which also generates
hydroxyl radicals (Beckman and Koppenol, 1996). Oxi-
dative stress describes an imbalance between ROS and
antioxidants. The normal production of oxidants is coun-
teracted by several antioxidant mechanisms in the hu-
man respiratory tract (Cantin et al., 1990). The major
intracellular antioxidants in the airways are catalase,
SOD, and glutathione, which is formed by the selenium-
dependent enzyme glutathione peroxidase. Extracellu-
lar antioxidants include the dietary antioxidants vita-
min C (ascorbic acid) and vitamin E (a-tocopherol), uric
acid, and lactoferrin. Oxidant stress activates the induc-
ible enzyme heme oxygenase-1, which converts heme
and hemin to biliverdin, with the formation of carbon
monoxide (Wong and Wispe, 1997; Choi and Alam,
1996). Biliverdin is converted, by bilirubin reductase, to
bilirubin, which is a potent antioxidant.

2. Effects on airways.
a. AIRWAY SMOOTH MUSCLE. Hydrogen peroxide di-

rectly constricts airway smooth muscle in vitro, and this
effect is mediated partly via the release of prostanoids
(Rhoden and Barnes, 1989). ROS may damage airway
epithelium, resulting in increased epithelial shedding
and increased bronchoconstriction responses (Yukawa et
al., 1990). In vitro, hydrogen peroxide induces an in-
crease in the responsiveness of human airways (Huls-
mann et al., 1994a). Formation of peroxynitrite also
increases airway responsiveness in guinea pigs in vitro
and in vivo (Sadeghi-Hashjin et al., 1996), but its effect
in human airways is not yet known.

b. VESSELS. Little is known regarding the effects of
ROS on the bronchial vasculature. Hydroxyl radical po-
tently induces plasma exudation in rodent airways (Lei
et al., 1996).

c. SECRETIONS. The effects of ROS on mucus secretion
have not yet been investigated in human airways. In
rats, oxidative stress increases airway mucus secretion,
an effect that is blocked by COX inhibitors (Adler et al.,
1990).

d. NERVES. Allergen impairs the function of bronchodi-
lating nerves in guinea pig airways in vivo by an effect
that is blocked by SOD, suggesting that superoxide an-
ions may scavenge NO released from motor nerves
(Miura et al., 1997). In rat airways, oxidant stress in-
creases cholinergic nerve-induced bronchoconstriction,
an effect that may be the result of oxidative damage to
acetylcholinesterase (Ohrui et al., 1991).

e. INFLAMMATORY CELLS. Oxidants also activate NF-kB
(which orchestrates the expression of multiple inflam-
matory genes that undergo increased expression in asth-
ma), thereby amplifying the inflammatory response
(Barnes and Karin, 1997). Many of the stimuli that
activate NF-kB appear to do so via the formation of ROS,
particularly hydrogen peroxide (Schreck et al., 1991).
ROS activate NF-kB in an epithelial cell line (Adcock et
al., 1994) and increase the release of proinflammatory
cytokines from cultured human airway epithelial cells
(Rusznak et al., 1996).

ROS and peroxynitrite induce lipid peroxidation, re-
sulting in the formation of additional mediators. Iso-
prostanes are derived from lipid peroxidation of arachi-
donic acid (Morrow and Roberts, 1996). The most
prevalent isoprostane is 8-epi-PGF2a, which is a potent
constrictor of human airways in vitro, acting predomi-
nantly via Tx receptors, as discussed above (Kawikova et
al., 1996).

3. Role in asthma.
a. RELEASE. Bronchoalveolar lavage fluid cells from

asthmatic patients show increased production of super-
oxide anions, compared with cells from normal individ-
uals (Jarjour and Calhoun, 1994), and this production is
increased further after allergen challenge (Calhoun and
Bush, 1990). Increased generation of superoxide has also
been reported for circulating monocytes and neutrophils
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from asthmatic patients (Vachier et al., 1994), and there
is evidence for increased oxidative stress in the circula-
tion (Rahman et al., 1996). Circulating eosinophils from
asthmatic patients produce excessive superoxide after
activation (Chanez et al., 1990), and this is increased
even further after allergen challenge (Evans et al.,
1996b). In experimental animals, certain viral infections
(e.g., influenza) induce various indices of oxidative
stress in the lungs (Choi and Alam, 1996), and this may
be relevant to exacerbations of asthma.

It has recently become possible to measure oxidative
stress using less invasive or noninvasive procedures,
facilitating more detailed exploration of these factors in
asthma. Hydrogen peroxide levels in exhaled conden-
sates are increased in asthmatic adults and children
(Dohlman et al., 1993; Jobsis et al., 1997; Antczak et al.,
1997; Horvath et al., 1998) and are increased further
during exacerbations (Dohlman et al., 1993). An increase
in exhaled carbon monoxide levels has been reported for
patients with asthma (Zayasu et al., 1997). Other non-
invasive markers include thiobarbituric acid-reactive
substances, which are produced as a result of lipid per-
oxidation and are increased in exhaled condensates from
asthmatic patients (Antczak et al., 1997). Pentane, an-
other product of lipid peroxidation, is also increased in
the exhaled air from asthmatic patients during exacer-
bations of asthma (Olopade et al., 1997). There is immu-
nocytochemical evidence for peroxynitrite formation in
asthmatic airways, obtained using an antibody to nitro-
tyrosine that detects nitrosylated proteins and demon-
strates increased immunoreactivity in the airway mu-
cosa, particularly in epithelial cells (Giaid et al., 1998).

In addition to the increased production of ROS in
asthma, there may be a deficiency in antioxidant de-
fenses. Glutathione peroxidase activity is reduced in
platelets from asthmatic patients and this reduction is
correlated with a reduction in serum selenium concen-
trations (Powell et al., 1994; Misso et al., 1996), but there
is a surprising increase in glutathione levels in bron-
choalveolar lavage fluid from asthmatic patients (Smith
et al., 1993). SOD activity is reduced in bronchoalveolar
lavage fluid cells and epithelial cells from asthmatic
patients, without any change in catalase activity (Smith
and Harrison, 1997). There is reduced SOD activity in
airway epithelial cells from asthmatic patients, because
of reduced expression of Cu/Zn-SOD, possibly from oxi-
dative inactivation (de Raeve et al., 1997). Interestingly,
there are no abnormalities in antioxidant levels in asth-
matic patients who achieve control with inhaled cortico-
steroids. There is increasing epidemiological evidence
that a lack of dietary antioxidants may be an important
determinant of asthma (Greene, 1995). Population sur-
veys have shown that a low dietary intake of the anti-
oxidant vitamin C is associated with poorer lung func-
tion and increased prevalence of wheezing (Britton et al.,
1995; Cook et al., 1997). A low intake of vitamin C is
associated with increased bronchial reactivity (Soutar et

al., 1997), consistent with the proposal that the in-
creased prevalence of asthma may be a result of reduc-
tions in the dietary intake of antioxidants (Seaton et al.,
1995). Another study reported a weak association be-
tween low vitamin E intake and asthma (Troisi et al.,
1995).

b. EFFECTS OF INHIBITORS. Several antioxidants have
also been administered to asthmatic patients, to explore
the effects of these compounds on lung function and
airway reactivity. There have been several short term
studies with vitamin C showing small beneficial effects
on either lung function or airway reactivity, but no mea-
surements of inflammation have been made (Bielory and
Gandhi, 1994). There have been no formal trials of vita-
min E or of another antioxidant, N-acetylcysteine. Sele-
nium administered for a 3-month period to patients with
chronic asthma produced a small but significant im-
provement in clinical symptoms but no improvement in
lung function or airway reactivity (Hasselmark et al.,
1993). Currently available antioxidants are rather
weak, but more potent drugs, including spin-trap anti-
oxidants (nitrones) and stable glutathione analogues,
are currently in clinical development.

B. Nitric Oxide

There is increasing evidence that endogenous NO
plays a key role in physiological regulation of airway
functions and is implicated in airway diseases, including
asthma (Barnes and Belvisi, 1993; Gaston et al., 1994;
Barnes, 1995b).

1. Synthesis and metabolism. NO is a gas that is
derived from the amino acid L-arginine by the enzyme
NOS, of which at least three isoforms exist (Nathan and
Xie, 1994). There are two cNOS forms; one was first
described in brain and is localized to neural tissue [neu-
ronal NOS (nNOS) or NOSI], and the other is localized
to endothelial cells [endothelial NOS (eNOS) or NOSIII],
although it has become apparent that both enzymes are
also expressed in other cells, such as epithelial cells.
Both enzymes are activated by increases in [Ca21]i and
produce small amounts of NO, which serve a local reg-
ulatory function. In contrast, iNOS (NOSII) is not nor-
mally expressed but is induced by inflammatory cyto-
kines and endotoxin. This enzyme form is less
dependent on increases in [Ca21]i, because calmodulin is
tightly bound to the enzyme; when the enzyme is in-
duced it is activated and produces much larger amounts
of NO than do cNOS isoforms. NO produced by cNOS is
involved in physiological regulation of airway function,
whereas NO produced by iNOS is involved in inflamma-
tory diseases of the airways and in host defenses against
infection.

Immunohistological studies have identified the pres-
ence of all three isoforms of NOS in human airways
(Kobzik et al., 1993; Ward et al., 1995b; Giaid et al.,
1998). eNOS is localized to endothelial cells in the bron-
chial circulation, but there is also evidence for eNOS
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expression in epithelial cells (Shaul et al., 1994). nNOS
is localized to cholinergic nerves in airways (Fischer et
al., 1993) but has also been reported in epithelial cells
(Asano et al., 1994). iNOS may be expressed in several
types of cells in response to cytokines, endotoxin, or
oxidants (Morris and Billiar, 1994). In asthmatic air-
ways, there is increased immunocytochemical staining
for iNO, which is localized predominantly to airway ep-
ithelial cells (Hamid et al., 1993), and there is also lo-
calization to inflammatory cells, including macrophages
and eosinophils (Giaid et al., 1998).

NO may be produced by several types of cells in the
airways. In primary cultured human airway epithelial
cells, proinflammatory cytokines increase NO produc-
tion and increase iNOS immunoreactivity and mRNA
levels (Robbins et al., 1994; Asano et al., 1994; Guo et al.,
1995). In a human epithelial cell line (A549) and in rat
type II pneumocytes, oxidants and ozone increase iNOS
expression (Adcock et al., 1994; Punjabi et al., 1994).
This is associated with activation of NF-kB, which is
involved in the transcription of many inflammatory and
immune genes (Barnes and Karin, 1997). NF-kB is of
critical importance in increasing the transcription of the
iNOS gene (Xie et al., 1994) and may be activated in
several types of pulmonary cells by proinflammatory
cytokines. Glucocorticoids inhibit the induction of iNOS
in epithelial cells, and this is likely to be via a direct
inhibitory interaction between the activated glucocorti-
coid receptor and NF-kB (Barnes and Karin, 1997). Eo-
sinophils also express iNOS and release nitrite (del Pozo
et al., 1997). It has proven difficult to induce iNOS in
human, compared with rodent, macrophages. In human
monocytes, anti-CD23 antibody causes release of nitrite,
suggesting that allergens may trigger iNOS expression
(Aubry et al., 1997), and similar results are seen in
alveolar macrophages from normal and asthmatic sub-
jects (Donnelly et al., 1998).

Progress in understanding the role of NO in health
and disease has been largely dependent on the develop-
ment of specific NOS inhibitors. The first inhibitors to be
developed were analogues of L-arginine, such as
L-NMMA and NG-nitro-L-arginine methyl ester (L-
NAME) (which are nonselective inhibitors of NOS), and
aminoguanidine (which selectively inhibits iNOS). More
potent and selective inhibitors are now in development.

NO is rapidly transformed to nitrite and nitrate,
which may be used to monitor NO production. NO also
rapidly combines with superoxide anions to form per-
oxynitrite, which is highly reactive, nitrosylates pro-
teins, and forms hydroxyl radicals (Beckman and Kop-
penol, 1996). Nitrosylation of tyrosine residues on
proteins and nitrotyrosine may be detected immunocy-
tochemically, providing evidence of local generation of
peroxynitrite (Beckman and Koppenol, 1996). The pres-
ence of nitrotyrosine has recently been demonstrated in
asthmatic airways, providing evidence for peroxynitrite
generation within the airways. The amount of nitroty-

rosine immunostaining is correlated with airway hyper-
responsiveness, as measured by methacholine challenge
(Giaid et al., 1998).

2. Receptors. NO does not have conventional receptors
but, rather, diffuses into cells and activates soluble gua-
nylyl cyclase, resulting in an increase in the formation of
cyclic GMP. In airway smooth muscle, cyclic GMP
causes relaxation (Ward et al., 1995a). Some of the ef-
fects of NO are mediated by the formation of peroxyni-
trite, as discussed above.

3. Effects on airways. NO has many effects on airway
function, although the effects of endogenous NO depend
on the site of production and the amount produced
(Barnes, 1996b).

a. AIRWAY SMOOTH MUSCLE. NO and NO donor com-
pounds relax human airway smooth muscle in vitro via
activation of guanylyl cyclase and increases in cyclic
GMP levels (Ward et al., 1995a; Gaston et al., 1993).
High concentrations of inhaled NO produce bronchodi-
lation and protect against cholinergic bronchoconstric-
tion in guinea pigs in vivo (Dupuy et al., 1992). In hu-
mans, inhalation of high concentrations of NO (80 ppm)
has no effect on lung function in normal subjects and
produces only weak and variable bronchodilation in
asthmatic patients (Högman et al., 1993; Sanna et al.,
1994; Kacmarek et al., 1996). NO may, however, be the
major neurotransmitter of bronchodilating nerves in hu-
man airways. In proximal human airways, there is a
prominent inhibitory NANC (i-NANC) bronchodilating
neural mechanism, which assumes particular functional
importance because it is the only endogenous bronchodi-
lating pathway in human airways. The neurotransmit-
ter of this i-NANC pathway in human airways is NO,
because NOS inhibitors virtually abolish this neural
response (Belvisi et al., 1992a,b; Bai and Bramley,
1993). Furthermore, i-NANC stimulation of human air-
ways results in an increase in cyclic GMP levels without
any increase in cyclic AMP levels (Ward et al., 1995a).
The density of nNOS-immunoreactive nerves is greatest
in proximal airways and diminishes peripherally, which
is consistent with a reduction in i-NANC responses in
more peripheral airways (Ward et al., 1995b). NOS is
predominantly localized to parasympathetic (cholin-
ergic) nerves and may be colocalized with vasoactive
intestinal polypeptide (VIP), although the functional
role of endogenous VIP in human airways is obscure
(Belvisi et al., 1992b).

b. VESSELS. NO is a potent vasodilator in the bronchial
circulation and may play an important role in regulating
airway blood flow, as in the pulmonary circulation (Hi-
genbottam, 1995; Crawley et al., 1990; Liu et al., 1991;
Martinez et al., 1995). Endogenous NO may increase the
exudation of plasma by increasing blood flow to leaky
postcapillary venules, thus increasing airway edema
(Kuo et al., 1992b). However, NOS inhibitors applied to
the airway surface increase plasma exudation, suggest-
ing that basal release of NO has an inhibitory effect on
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microvascular leakage (Erjefält et al., 1994). This para-
dox is resolved by considering the differing effects of NO,
depending on the amount produced. In rat airways,
L-NAME increases basal leakiness, whereas after endo-
toxin exposure, when iNOS is induced, L-NAME inhibits
leakage (Bernareggi et al., 1997). Thus, the effect of
endogenous NO on plasma exudation may depend on the
amount produced and the site of production. In the con-
text of asthma, the increased production of NO is likely
to result in increased plasma exudation. Furthermore, if
peroxynitrite is generated in asthma, this may lead to
the formation of hydroxyl radicals that also increase
airway plasma exudation (Lei et al., 1996).

c. SECRETIONS. L-NAME increases basal airway mucus
secretions, suggesting that NO produced by cNOS nor-
mally inhibits mucus secretion (Ramnarine et al., 1996).
However, NO donors increase mucus secretion in human
airways in vitro (Nagaki et al., 1995). In cultured guinea
pig airways after exposure to TNF-a and other inflam-
matory stimuli, there is increased secretion of mucus,
which is inhibited by L-NMMA, suggesting that large
amounts of NO generated by iNOS stimulate mucus
secretion (Adler et al., 1995). Endogenous NO may also
be important in regulating mucociliary clearance, be-
cause a NOS inhibitor decreases ciliary beat frequency
in bovine airway epithelial cells (Jain et al., 1993).

d. NERVES. NO may be released with acetylcholine
from cholinergic nerves and may modulate cholinergic
neural responses. NOS inhibitors increase cholinergic
neural bronchoconstriction in human and guinea pig
airways (Belvisi et al., 1991, 1993; Ward et al., 1993).
However, this appears to be the result of functional
antagonism at the level of airway smooth muscle, rather
than an effect on acetylcholine release from cholinergic
nerves (Brave et al., 1991; Ward et al., 1993).

e. INFLAMMATORY CELLS. High concentrations of NO
are cytotoxic and are involved in basic defenses against
microorganisms. Targeted disruption (“knock-out”) of
the iNOS gene in mice results in a marked increase in
susceptibility to infections (Wei et al., 1995; Laubach et
al., 1995). It is possible that NO is toxic to epithelial cells
in the airways and may contribute to epithelial shedding
in asthma. These effects are likely to be mediated by the
formation of peroxynitrite.

There is increasing evidence that high concentrations
of NO may have effects on the immune system and the
inflammatory response. NO inhibits Th1 lymphocytes in
mice and thus favors the development of a Th2 response,
with eosinophilia (Taylor-Robinson et al., 1993; Barnes
and Liew, 1995). There is also evidence that NO pro-
motes the chemotaxis of eosinophils, because L-NAME
blocks eosinophil recruitment in the lungs (Ferreira et
al., 1996). NO-donor compounds increase the survival of
eosinophils by inhibiting apoptosis (Beauvais et al.,
1995), and NO inhibits Fas receptor-mediated apoptosis
in these cells (Hebestreit et al., 1998).

4. Role in asthma.
a. RELEASE. There is evidence for increased expression

of iNOS in asthmatic airways, particularly in epithelial
cells and macrophages (Hamid et al., 1993; Giaid et al.,
1998). It is likely that this arises from the effects of
proinflammatory cytokines, oxidants, and perhaps other
inflammatory mediators. Because NO is a gas, it diffuses
into the airway lumen and may be detected in exhaled
air (Barnes and Kharitonov, 1996). There is an increase
in NO levels in the exhaled air from asthmatic patients
(Alving et al., 1993; Kharitonov et al., 1994; Persson et
al., 1994), which is derived from the lower airways
(Kharitonov et al., 1996b; Massaro et al., 1996). The
increased exhaled NO in asthma is related to airway
inflammation (Jatakanon et al., 1998), is increased dur-
ing the late response to allergen (Kharitonov et al., 1995)
and during exacerbations (Massaro et al., 1995), and is
decreased by treatment with inhaled corticosteroids
(Kharitonov et al., 1996a).

b. EFFECTS OF INHIBITORS. Although exhaled NO is a
useful noninvasive marker of inflammation in asthma, it
is less certain how endogenous NO contributes to the
pathophysiological mechanisms of asthma. Single inha-
lations of L-NMMA and L-NAME (via a nebulizer) result
in reduced exhaled NO levels for normal and asthmatic
patients (Kharitonov et al., 1994; Yates et al., 1995,
1996). Interestingly, there is no fall in forced expiratory
volume in 1 sec, even in asthmatic patients with highly
reactive airways, suggesting that basal production of
NO is not important in maintaining basal airway tone.
Although infusion of L-NMMA in normal subjects causes
an increase in blood pressure, neither nebulized L-
NAME nor L-NMMA has any effect on heart rate or
blood pressure, suggesting that inhibition of NOS is
confined to the respiratory tract. Although L-NMMA and
L-NAME are nonselective inhibitors of cNOS and iNOS,
aminoguanidine has some selectivity for iNOS. Inhala-
tion of aminoguanidine has no effect on exhaled NO
levels of normal subjects but significantly reduces ex-
haled NO levels of patients with asthma (Yates et al.,
1996), further supporting the view that the elevated
levels of exhaled NO in asthma are produced by iNOS.
More potent and selective iNOS inhibitors are now in
clinical development (Garvey et al., 1997).

c. CONCLUSIONS. There is good evidence for increased
formation of NO in asthma, as evidenced by the high
levels of NO in exhaled air, compared with normal sub-
jects, and the fact that this increase is correlated with
eosinophilic inflammation. NO is a potent vasodilator
and may increase plasma exudation. It may also partic-
ipate in the inflammatory response by shifting the bal-
ance toward Th2 cells and by recruiting and increasing
the survival of eosinophils in the airways. Use of the
potent selective iNOS inhibitors now in clinical develop-
ment should reveal the importance of NO in asthma.
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VI. Cytokines

A. General Overview

1. The cytokine network in chronic inflammation. Cy-
tokines are small protein mediators that play an inte-
gral role in the coordination and persistence of inflam-
mation in asthma, although the precise role of each
cytokine remains to be determined. The chronic airway
inflammation of asthma is unique, in that the airway
wall is infiltrated by T lymphocytes of the Th2 pheno-
type, eosinophils, macrophages/monocytes, and mast
cells. In addition, “acute-on-chronic” inflammation may
be observed in acute exacerbations, with increases in
eosinophils and neutrophils and release of mediators
such as histamine and cys-LTs from eosinophils and
mast cells, to induce bronchoconstriction, airway edema,
and mucus secretion.

Th2 lymphocytes produce a panel of cytokines, includ-
ing IL-3, IL-4, IL-5, IL-9, IL-10, IL-13, and GM-CSF.
The primary signals that activate Th2 cells are un-
known but may be related to the presentation of a re-
stricted panel of antigens in the presence of appropriate
cytokines. Dendritic cells are ideally suited to act as the
primary contacts between the immune system and ex-
ternal allergens. Interaction of co-stimulatory molecules
on the surface of antigen-presenting cells (in particular,
the B7.2/CD28 interaction) may lead to proliferation of
Th2 cells, thus perpetuating mast cell activation and
eosinophilic inflammation. This may lead to the produc-
tion of specific IgE by B lymphocytes under the influence
of IL-4, which plays a critical role in the isotype switch-
ing of B lymphocytes from IgG to IgE production. Other
cytokines, including TNF-a and IL-6, may also be im-
portant. The IgE produced in asthmatic airways binds to
FceRI on mast cells, priming them for activation by
antigen. The development of mast cells from bone mar-
row cells represents a process of maturation and expan-
sion, involving growth factors and cytokines [such as
stem cell factor (SCF) and IL-3] produced by structural
cells. Mast cells recovered from asthmatic patients by
bronchoalveolar lavage show increased release of medi-
ators such as histamine.

IL-4 also increases the expression of an inducible form
of the low affinity receptor for IgE (FceRII or CD23) on B
lymphocytes and macrophages. This may account for the
increased expression of CD23 on alveolar macrophages
from asthmatic patients, which in turn could account for
the increased release of cytokines from these macro-
phages. In addition, IL-4 is very important in driving the
differentiation of CD41 Th precursors into Th2-like
cells.

The differentiation, migration, and pathobiological ef-
fects of eosinophils may occur through the effects of
GM-CSF, IL-3, and IL-5. Once recruited from the circu-
lation, mature eosinophils in the presence of these cyto-
kines change phenotype into hypodense eosinophils,
which show increased survival in bronchial tissue.

These eosinophils are primed for ligand-initiated gener-
ation of increased amounts of cys-LTs and for cytotoxic-
ity to other cells, such as those of the airway epithelium.
Eosinophils themselves may also generate other cyto-
kines.

Cytokines may also play an important role in antigen
presentation and may enhance or suppress the ability of
macrophages to act as antigen-presenting cells. Airway
macrophages are normally poor at antigen presentation
and suppress T cell proliferative responses [possibly via
release of cytokines such as IL-1 receptor antagonist
(IL-1ra)], but in asthma there is evidence for reduced
suppression after exposure to allergen (Spiteri et al.,
1994; Aubus et al., 1984). Both GM-CSF and IFN-g
increase the ability of macrophages to present allergen
and express HLA-DR (Fischer et al., 1988). IL-1 is im-
portant in activating T lymphocytes and is an important
co-stimulator of the expansion of Th2 cells after antigen
presentation (Chang et al., 1990). Airway macrophages
may be an important source of “first wave” cytokines,
such as IL-1, TNF-a, and IL-6, which may be released
(via FceRII) upon exposure to inhaled allergens. These
cytokines may then act on epithelial cells to release a
second wave of cytokines, including GM-CSF, IL-8, and
the regulated on activation, normal T cell-expressed,
and secreted protein (RANTES), which amplify the in-
flammatory response and lead to influx of secondary
cells such as eosinophils, which themselves may release
multiple cytokines.

Cytokines may also exert an important regulatory
effect on the expression of adhesion molecules, both on
endothelial cells of the bronchial circulation and on air-
way epithelial cells. IL-4 increases the expression of
vascular cell adhesion molecule-1 (VCAM-1) on endothe-
lial and airway epithelial cells, and this may be impor-
tant in eosinophil and lymphocyte trafficking (Schleimer
et al., 1992). IL-1 and TNF-a increase the expression of
ICAM-1 in both vascular endothelium and airway epi-
thelium (Tosi et al., 1992).

Another feature of the chronic inflammation of
asthma is the proliferation of myofibroblasts and the
hyperplasia of airway smooth muscle. The mechanisms
by which these structural changes occur are unclear, but
several growth factors, such as platelet-derived growth
factor (PDGF) and TGF-b, may be released from inflam-
matory cells in the airways (such as macrophages and
eosinophils) and also from structural cells (such as air-
way epithelial cells, endothelial cells, and fibroblasts).
These growth factors may stimulate fibrogenesis by re-
cruiting and activating fibroblasts or transforming myo-
fibroblasts. There is particular interest in the possibility
that epithelial cells may release growth factors, because
collagen deposition occurs underneath the basement
membrane of the airway epithelium (Brewster et al.,
1990). Growth factors may also stimulate the prolifera-
tion and growth of airway smooth muscle cells. PDGF
and EGF are potent stimulants of animal and human
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airway smooth muscle proliferation (Hirst et al., 1992;
Knox, 1994), and these effects are mediated by activa-
tion of tyrosine kinase and PKC. Growth factors may
also be important in the proliferation of mucosal blood
vessels and the goblet cell hyperplasia that are charac-
teristic of chronically inflamed asthmatic airways. Cyto-
kines such as TNF-a and fibroblast growth factors
(FGFs) may also play important roles in the angiogene-
sis that is observed in chronic asthma.

Therefore, many cytokines are involved in the devel-
opment of the atopic state and the chronic inflammatory
processes of asthma, ultimately contributing to the re-
lease of mediators such as histamine and cys-LTs, air-
way remodeling, bronchoconstriction, and bronchial hy-
perresponsiveness (table 2). The role of each cytokine in
these processes can be evaluated by studying its prop-
erties, its presence and localization in the airway wall
and in airway secretions of patients with asthma, and
the effects of specific inhibitors, such as receptor antag-
onists or specific antibodies. Although these cytokines

work in concert, the important cytokines implicated in
asthma are considered separately. It is difficult to cate-
gorize these cytokines because they often have pleiotro-
pic and overlapping effects. With respect to asthma and
allergy, the following groupings are used in this review:
(a) lymphokines, i.e., IL-2, IL-3, IL-4, IL-5, IL-13, IL-15,
IL-16, and IL-17; (b) proinflammatory cytokines, i.e.,
IL-1, TNF, IL-6, IL-11, GM-CSF, and SCF; (c) anti-
inflammatory cytokines, i.e., IL-10, IL-1ra, IFN-g, IL-12,
and 1L-18; and (d) growth factors, i.e., PDGF, TGF-b,
FGF, EGF, and insulin-like growth factor (IGF). Chemo-
tactic cytokine (chemokines) are discussed in Section
VII.

This section deals with the cytokines that appear to be
most involved in asthma. Their synthesis and release,
receptors, effects with particular relevance to asthma,
and potential role in asthma are discussed. As for the
classical mediators, the potential role of each cytokine
can be judged from its expression in asthmatic airways,
from studies with transgenic or knock-out mice, or from

TABLE 2
Effects of cytokines in asthma

Cytokine Eosinophil activation T lymphocyte activation Other cell activation IgE control AHRa

Lymphokines
IL-2 Eosinophilia in vivo Growth and differentiation

of T cells
Monocytes/macrophages, B cells, lymphokine-

activated killer cells
11

IL-3 Eosinophilia in vivo Pluripotential hematopoietic factor ?
IL-4 1 eosinophil growth 1 Th2, 2 Th1 B cells, monocytes/macrophages, endothelium 1 IgE 1
IL-5 Eosinophil maturation, 2

apoptosis
1 Th2 cells Eosinophils 11

IL-13 Activates eosinophils, 2
apoptosis

Monocytes, B cells 1 IgE ?

IL-15 As for IL-2 Growth and differentiation
of T cells

Activation of neutrophils and monocytes ? ?

IL-16 Eosinophil migration Growth factor and
chemotaxis of T cells
(CD41)

? ?

IL-17 T cell proliferation Activation of epithelial and endothelial cells,
fibroblasts

? ?

Proinflammatory cytokines
IL-1 1 adhesion to vascular

endothelium, eosinophil
accumulation in vivo

Growth factor for Th2 cells B cell growth factor, neutrophil
chemoattractant, T cell and epithelial cell
activation

1

TNF-a Epithelium, endothelium, antigen-presenting
cells, monocytes/macrophages

1

IL-6 T cell growth factor B cell growth factor 1 IgE ?
IL-11 ? B cell growth factor, activation of fibroblasts 1
GM-CSF Eosinophil apoptosis and

activation, induces release
of LTs

Proliferation and maturation of hematopoietic
cells, endothelial cell migration

1

SCF 1 VCAM-1 on eosinophils Growth factor for mast cells 2

Inhibitory cytokines
IL-10 2 eosinophil survival 2 Th1 and Th2 2 monocyte/macrophage activation, 1 B

cells, 1 mast cell growth
2

IL-1ra 2 Th2 proliferation 2
IFN-g 2 eosinophil influx after

allergen
2 Th2 cells Endothelial cells, epithelial cells, alveolar

macrophages/monocytes
2 IgE 2

IL-12 2 eosinophil influx after
allergen

1 activated T cells, 1
Th1, 2 Th2

1 natural killer cells 2 IgE 2

IL-18 2 via IFN-g release Releases IFN-g from Th1
cells

Activation of natural killer cells and
monocytes

2 IgE ?2

Growth factors
PDGF Fibroblast and ASM proliferation, release of

collagen
?

TGF-b 2 T cell proliferation,
blocks IL-2 effects

Fibroblast proliferation, chemoattractant for
monocytes, fibroblasts, and mast cells, 2
ASM proliferation

?

a AHR, airway hyperresponsiveness; 1, modest effect; 11, marked effect; ASM, airway smooth muscle.
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studies involving the use of synthesis inhibitors, anti-
bodies, or blockers at the receptor level.

2. Cytokine receptors. The receptors for many cyto-
kines have now been cloned and, based on common ho-
mology regions, these have been grouped into super-
families (Kishimoto et al., 1994).

a. CYTOKINE RECEPTOR SUPERFAMILY. This largest re-
ceptor superfamily includes IL-2 receptor b- and
g-chains, IL-4 receptor, IL-3 receptor a- and b-chains,
IL-5 a- and b-chains, IL-6 receptor, gp130, IL-12 recep-
tor, and GM-CSF receptor. The extracellular regions of
the cytokine receptor family contain combinations of
cytokine receptor domains, fibronectin type III domains,
and usually C2 Ig constant region-like domains. Some
members are composed of a single polypeptide chain
that binds its ligand with high affinity. For other recep-
tors, there may be more than one binding site for the
ligand (typically sites with high and low binding affini-
ties). For these receptors, additional subunits that are
required for high affinity receptor expression have been
identified. Some of these subunits are shared by more
than one cytokine receptor, giving rise to heterodimeric
structures. Such examples include (a) receptors sharing
the GM-CSF receptor b-chain (IL-3, IL-5, and GM-CSF);
(b) receptors sharing the IL-6 receptor b-chain, gp130
(IL-6, leukemia inhibitory factor, and oncostatin M); and
(c) receptors sharing the IL-2 receptor g-chain (IL-2,
IL-4, IL-7, and IL-15).

Many proteins of the cytokine receptor superfamily
are secreted as soluble forms, which are produced by
alternative splicing of their mRNA transcripts to yield
proteins lacking the transmembrane region and the cy-
toplasmic proximal charged residues that anchor the
protein into the membrane. They may act as antago-
nists, as transport proteins to carry cytokines to other
sites, or as agonists.

b. IMMUNOGLOBULIN SUPERFAMILY. Cytokine receptors
with Ig superfamily domains in their extracellular se-
quences include IL-1, IL-6, PDGF, and GM-CSF recep-
tors. The Ig domains are characterized by a structural
unit of approximately 100 amino acids, with a distinct
folding pattern known as the Ig fold.

c. PROTEIN KINASE RECEPTOR SUPERFAMILY. These re-
ceptors have glycosylated, extracellular, ligand-binding
domains, a single transmembrane domain, and an intra-
cellular, tyrosine kinase catalytic domain. The super-
family includes receptors for growth factors such as
PDGF, EGF, and FGF.

d. INTERFERON RECEPTOR SUPERFAMILY. This group in-
cludes the IFN-a/b receptor, IFN-g receptor, and IL-10
receptor. They are single-transmembrane domain glyco-
proteins that are characterized by either one (IFN-g and
IL-10 receptors) or two (IFN-a/b receptors) homologous
extracellular regions. Signal transduction involves phos-
phorylation and activation of Janus protein kinase and
tyrosine kinase 2 protein tyrosine kinases.

e. NERVE GROWTH FACTOR RECEPTOR SUPERFAMILY.
These cytokine receptors include the nerve growth factor
receptor, TNF receptor-I (p55), and TNF receptor-II
(p75). These are characterized by three or four cysteine-
rich repeats of approximately 40 amino acids in the
extracellular part of the molecule. The mode of signal
transduction has not been elucidated.

f. SEVEN-TRANSMEMBRANE DOMAIN G PROTEIN-COUPLED

RECEPTOR SUPERFAMILY. These receptors include the che-
mokine receptors, which have a characteristic structure
of a relatively short, acidic, extracellular, amino-termi-
nal sequence followed by seven transmembrane domains
with three extracellular and three intracellular loops.
The receptors are coupled to heterotrimeric G proteins,
which induce PI phosphate hydrolysis and activate ki-
nases, phosphatases, and ion channels.

B. Lymphokines

Lymphokines are cytokines that are produced by T
lymphocytes, although it is now recognized that many
other cell types may release these cytokines. They play
an important role in immunoregulation.

1. Interleukin-2.
a. SYNTHESIS AND RELEASE. Activated T cells, particu-

larly Th0 and Th1 T cells, are major sources of IL-2
(Morgan et al., 1976), whereas B lymphocytes can be
induced under certain conditions to secrete IL-2 in vitro.
IL-2 is secreted by antigen-activated T cells 4 to 12 h
after activation, accompanied later by up-regulation of
high affinity IL-2 receptors on the same cells. Binding of
IL-2 to IL-2 receptors induces proliferation of T cells,
secretion of cytokines, and enhanced expression of re-
ceptors for other growth factors, such as insulin. The
IL-2-receptor complex is then removed from the T cell
surface by internalization. IL-2 can also be produced by
eosinophils (Levi Schaffer et al., 1996) and by airway
epithelial cells (Aoki et al., 1997).

b. RECEPTORS. The IL-2 receptor complex is composed
of three chains (a, b, and g) and belongs to the family of
hematopoietic cytokine receptors (Taniguchi and Mi-
nami, 1993; Weiss and Littman, 1994). The a- and
b-chains bind to IL-2 with low affinity, whereas the
g-chain does not bind IL-2 alone. The high affinity com-
plex is an abg heterotrimer, whereas ag and bg het-
erodimers have intermediate affinities. The b-chain,
which is expressed constitutively in T lymphocytes, is
essential for signal transduction, and the intracellular
domain has critical sequences necessary for growth-pro-
moting signals (Hatakeyama et al., 1989). The g-chain
also appears to be important for signal transduction
(Zurawski and Zurawski, 1992), whereas the a-chain
alone is unable to transduce any signal.

c. EFFECTS. IL-2 stimulates the growth and differen-
tiation of T cells, B cells, natural killer cells, lympho-
kine-activated cells, and monocytes/macrophages. IL-2
functions as an autocrine growth factor for T cells and
also exerts paracrine effects on other T cells (Smith,
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1988). IL-2 is also involved in T cell receptor-stimulated
T cell apoptosis (Lenardo, 1991). IL-2 promotes the dif-
ferentiation and Ig secretion of B cells. IL-2 acts on
monocytes to increase IL-1 secretion, cytotoxicity, and
phagocytosis (Smith, 1988). Experiments with IL-2 gene
knock-out mice show that these animals develop a nor-
mal thymus and normal T cell subpopulations in periph-
eral tissues, indicating that IL-2 activity is redundant
and not confined to IL-2 alone (Schorle et al., 1991).
Together with IL-4, IL-2 can reduce the glucocorticoid
receptor binding affinity of blood mononuclear cells
(Sher et al., 1994). IL-2 stimulates natural killer cells to
secrete IFN-g, to proliferate, and to increase cytolysis.
IL-2 enhances GM-CSF production in peripheral blood
mononuclear cells from asthmatics and IL-5 production
in T cells from patients with the hypereosinophilic syn-
drome (Nakamura et al., 1993; Enokihara et al., 1989).
IL-2 is a potent chemoattractant for eosinophils in vitro
(Rand et al., 1991b).

Systemic infusion of IL-2 as part of chemotherapeutic
treatment results in eosinophilia, with an associated
increase in eosinophil colony-stimulating activity (Sedg-
wick et al., 1990; Macdonald et al., 1990). This activity
was abolished by neutralizing antibodies to IL-3, IL-5, or
GM-CSF, indicating that IL-2 acts indirectly by promot-
ing the synthesis of these substances. Repeated admin-
istration of IL-2 induces bronchial hyperresponsiveness
in Lewis rats (Renzi et al., 1991). In ovalbumin-
sensitized Brown-Norway rats, IL-2 led to a 3-fold
increase in the late-phase response, compared with the
response in rats receiving only saline before allergen
exposure (Renzi et al., 1992). IL-2 caused an inflamma-
tory response around the airways, with a significant
increase in eosinophils, lymphocytes, and mast cells.

d. ROLE IN ASTHMA. Levels of IL-2 are increased in
bronchoalveolar lavage fluid from patients with symp-
tomatic asthma (Walker et al., 1992; Broide et al.,
1992b). Increased bronchoalveolar lavage cells express-
ing IL-2 mRNA are also present (Robinson et al., 1992),
and a nonsignificant increase in IL-2 mRNA-positive
cells is observed in asthmatics after allergen challenge
(Bentley et al., 1993). Particularly high levels of IL-2 and
IL-4 mRNA-positive bronchoalveolar lavage cells are ob-
served in steroid-resistant asthmatics, compared with
steroid-sensitive asthmatics (Leung et al., 1995); this
increase is not abolished by pretreatment with oral
prednisolone for the steroid-resistant patients, and
there are no differences in the expression of IL-5 and
IFN-g mRNA between the two groups.

Cyclosporin A, which inhibits IL-2 gene transcription
in activated T lymphocytes through interference with
the transcription factors AP-1 and NF-AT, inhibits al-
lergic airway eosinophilia but not bronchial hyperre-
sponsiveness in animal models (Elwood et al., 1992).
However, for patients with severe asthma, cyclosporin A
causes a reduction in the amount of oral steroid therapy
needed to control asthmatic symptoms (Alexander et al.,

1992), although this finding was not confirmed in an-
other study (Nizankowska et al., 1995). These effects of
cyclosporin A may result from inhibition of IL-2 expres-
sion, as well as inhibition of the expression of other
cytokines, such as GM-CSF and IL-5.

2. Interleukin-3.
a. SYNTHESIS AND RELEASE. Activated Th cells are the

predominant source of IL-3, together with mast cells
(Arai et al., 1990; Fung et al., 1984).

b. RECEPTORS. The IL-3 receptor is formed by the
association of a low affinity IL-3-binding a-subunit with
a b-subunit, which is common to the IL-5 and GM-CSF
receptors but does not itself bind to these cytokines
(Hayashida et al., 1990). IL-3 binding to its receptor
results in rapid tyrosine and serine/threonine phosphor-
ylation of several cellular proteins, including the IL-3
receptor b-subunit itself (Isfort et al., 1988; Sorensen et
al., 1989). A monoclonal antibody to the IL-3 receptor
a-chain abolishes its function (Sun et al., 1996). The
human IL-3 receptor is expressed on myeloid, lymphoid,
and vascular endothelial cells. It is selectively induced
in human endothelial cells by TNF-a, and it potentiates
IL-8 secretion and neutrophil transmigration (Korpel-
ainen et al., 1993).

c. EFFECTS. IL-3 is a pluripotent hematopoietic growth
factor that, together with other cytokines such as GM-
CSF, stimulates the formation of erythroid cell,
megakaryocyte, neutrophil, eosinophil, basophil, mast
cell, and monocytic lineages (Ottmann et al., 1989). GM-
CSF also increases the responsiveness of neutrophils to
IL-3 (Smith et al., 1995). Mice that overexpress IL-3
show only modest eosinophilia but die early because of
massive tissue infiltration and destruction by myeloid
cells such as neutrophils and macrophages (Dent et al.,
1990).

d. ROLE IN ASTHMA. An increase in the number of cells
expressing IL-3 mRNA has been reported in mucosal
biopsies and in bronchoalveolar lavage cells from pa-
tients with asthma (Robinson et al., 1992,1993a). How-
ever, after inhalation challenge, the number of IL-3
mRNA-positive cells does not increase, in contrast to
those expressing IL-5 (Bentley et al., 1993).

3. Interleukin-4.
a. SYNTHESIS AND RELEASE. IL-4 is produced by Th2-

derived T lymphocytes and certain populations of thy-
mocytes, as well as eosinophils and cells of the basophil
and mast cell lineages. Cross-linking of the CD40 ligand
on human CD41 T cells from normal nonallergic sub-
jects generates a co-stimulatory signal that increases
IL-4 synthesis (Blotta et al., 1996). Synthesis can also be
induced by stimulation of the antigen receptor on T
lymphocytes and by IgE Fc receptor cross-linking in
mast cells and basophils. Interestingly, corticosteroids
enhance the capacity to induce IL-4 synthesis from
CD41 T cells (Blotta et al., 1997).

b. RECEPTORS. The IL-4 receptor is a complex consist-
ing of two chains, a high affinity IL-4-binding chain

554 BARNES ET AL.

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


(p140, a-chain), which binds IL-4 and transduces its
growth-promoting and transcription-activating func-
tions (Galizzi et al., 1990; Idzerda et al., 1990), and the
IL-2 receptor g-chain (the common g-chain, gc), which
amplifies signaling of the IL-4 receptor (Russell et al.,
1993; Kondo et al., 1993). The a-chain belongs to the
cytokine receptor superfamily. A recombinant extracel-
lular domain of the human IL-4 receptor is a potent IL-4
antagonist (Garrone et al., 1991). The IL-2 receptor
g-chain augments IL-4 binding affinity (Kondo et al.,
1993; Russell et al., 1993). A low affinity IL-4 receptor
has also been identified (Fanslow et al., 1993). High
affinity IL-4 receptors are abundant in activated B and
T cells. They are also present on hematopoietic progen-
itor cells, mast cells, macrophages, endothelial cells, ep-
ithelial cells, fibroblasts, and muscle cells (Park et al.,
1987a,b; Ohara and Paul, 1987).

IL-4 induces phosphorylation of the IL-4-induced
phosphotyrosine substrate, which is associated with the
p85 subunit of phosphatidylinositol-3 kinase and with
Stat-6 and Janus protein kinase after cytokine stimula-
tion (Imani et al., 1997; Hatakeyama et al., 1991; Wang
et al., 1992, 1993). The transcription factor Stat-6 is
essential for mediation of the effects of IL-4 (Takeda et
al., 1996; Shimoda et al., 1996). IL-4 also stimulates PI
hydrolysis, yielding IP3 and subsequent calcium flux,
followed by increased intracellular cyclic AMP levels
(Finney et al., 1990). Interestingly, an association with
atopy has been found with a R567 allele of the IL-4
receptor a-subunit (Khuruna Hershey et al., 1997),
which enhances signaling and decreases the binding of
the phosphotyrosine phosphatase Src homology 2-con-
taining protein tyrosine phosphate (which has been im-
plicated in termination of signaling by means of cytokine
receptors) (Imani et al., 1997; Paulson et al., 1996).

c. EFFECTS. IL-4 plays an important role in B lympho-
cyte activation by increasing expression of class II major
histocompatibility complex (MHC) molecules, as well as
enhancing expression of CD23 (low affinity FceRII),
CD40, and the a-chain of the IL-2 receptor. It promotes
Ig synthesis by B lymphocytes and plays a central role in
Ig class switching of activated B lymphocytes to the
synthesis of IgG4 and IgE. This switching is accompa-
nied by germline e-chain synthesis. IL-4 promotes the
development of Th2-like CD41 T cells and inhibits the
development of Th1-like T cells (Le Gros et al., 1990;
Swain et al., 1990). It also enhances the cytolytic activity
of CD81 cytotoxic T cells. Virus-specific CD81 T cells can
be induced by IL-4 to produce IL-5 (Coyle et al., 1995a).

IL-4 also exerts effects on monocytes and macro-
phages. It enhances the surface expression of MHC class
II molecules and the antigen-presenting capacity of mac-
rophages but inhibits the macrophage colony formation
and release of TNF, IL-1, IL-12, IFN-g, IL-8, and mac-
rophage inflammatory protein (MIP)-1a. Together with
other cytokines such as GM-CSF and IL-6, IL-4 can
promote the growth of mast cell and myeloid and ery-

throid progenitors. IL-4 also up-regulates endothelial
VCAM-1 expression on the endothelium. Interaction of
VCAM-1 with very late activation antigen-4 promotes
eosinophil recruitment (Schleimer et al., 1992). IL-4 also
induces fibroblast chemotaxis and activation (Postle-
thwaite et al., 1992; Postlethwaite and Seyer, 1991) and,
in concert with IL-3, IL-4 promotes the growth of human
basophils and eosinophils (Favre et al., 1990). IL-4 has
inhibitory effects such as suppression of metalloprotein-
ase biosynthesis in human alveolar macrophages
(Lacraz et al., 1992), inhibition of the expression of iNOS
in human epithelial cells (Berkman et al., 1996b), and
reduction of RANTES and IL-8 expression in human air-
way smooth muscle cells (John et al., 1997, 1998a).

d. ROLE IN ASTHMA. IL-4 has been shown to be ex-
pressed by CD41 and CD81 T cells, eosinophils, and
mast cells in both atopic and nonatopic asthma (Brad-
ding et al., 1992; Ying et al., 1997). Increased numbers of
lymphocytes expressing IL-4 mRNA together with IL-5
mRNA in bronchoalveolar lavage fluid have been re-
ported after allergen challenge (Robinson et al., 1993a).
No increased levels of IL-4 have been detected in bron-
choalveolar lavage fluid of asthmatics (Broide et al.,
1992b). The potential importance of IL-4 in inducing
allergic airway inflammation has been addressed with
IL-4-knock-out mice. Sensitization and exposure to
ovalbumin did not induce lung eosinophilia as it did in
the wild-type littermates (Brusselle et al., 1994). No
ovalbumin-specific IgE was observed with active sensi-
tization, and repeated exposures to ovalbumin did not
induce bronchial hyperresponsiveness (Brusselle et al.,
1995). The crucial effects of IL-4 appear to lie in its effect
on Th2 cell development. The development of airway
inflammation in the murine model of allergen-induced
airway inflammation is accompanied by the presence of
Th2 cells in the airways (Coyle et al., 1995b). In IL-4-
knock-out mice, T cells recovered from the airways do
not synthesize a Th2 cytokine pattern, which correlates
with the absence of inflammatory airway changes. When
wild-type mice are treated with anti-IL-4 during the
exposure to aerosolized ovalbumin but not during the
sensitization process, the influx of eosinophils to the
airways is not inhibited (Corry et al., 1996; Coyle et al.,
1995b). IL-4 receptor blockade prevents the develop-
ment of antigen-induced airway hyperreactivity, goblet
cell metaplasia, and pulmonary eosinophilia in a mouse
model (Gavett et al., 1997). Thus, IL-4 appears to be
important in the early stages of Th2 cell development.

4. Interleukin-5.
a. SYNTHESIS AND RELEASE. IL-5 was first isolated from

supernatants of activated murine spleen cells, which
were shown to induce eosinophil colony formation. The
isolated soluble activity was shown to selectively stimu-
late eosinophil production from murine bone marrow
and was termed eosinophil differentiation factor. IL-5
was isolated from this soluble activity (Lopez et al.,
1986). IL-5 is produced by T lymphocytes; in asthmatic
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airways, increased expression of IL-5 mRNA has been
demonstrated in CD41 T cells, using in situ hybridiza-
tion (Hamid et al., 1991). Bronchoalveolar lavage CD41

and CD81 T cells can also secrete IL-5 (Till et al., 1995).
IL-5 mRNA has been detected in the sputum and bron-
chial biopsies from patients with asthma, but not non-
asthmatic controls, using reverse transcription-polymer-
ase chain reaction (Gelder et al., 1993, 1995). In
addition, human eosinophils can express IL-5 mRNA
and release IL-5 protein in vitro (Dubucquoi et al., 1994),
and endobronchial challenge results in IL-5 mRNA ex-
pression in eosinophils in bronchoalveolar lavage fluid
(Broide et al., 1992b), with an increase in IL-5 concen-
trations of up to 300-fold (Ohnishi et al., 1993b; Sedg-
wick et al., 1991). Elevated IL-5 concentrations have
been reported in bronchoalveolar lavage fluid from
symptomatic but not asymptomatic asthmatics (Ohnishi
et al., 1993a). Increased circulating levels of immunore-
active IL-5 have been measured in the serum of patients
with exacerbations of asthma, and these levels fall with
corticosteroid treatment (Corrigan et al., 1993). IL-5 lev-
els are raised in induced sputum after allergen chal-
lenge of asthmatic patients (Keatings et al., 1997). IL-5
protein has also been localized (by immunochemical
analysis) in mast cells in bronchial biopsies of patients
with asthma, together with IL-4, IL-6, and TNF-a (Brad-
ding et al., 1994). Transcriptional control of the human
IL-5 gene involves several transcription factors, includ-
ing NF-AT (Stranick et al., 1997).

b. RECEPTORS. The human IL-5 receptor has been
identified in vitro on eosinophils, basophils, and B lym-
phocytes but not on neutrophils or monocytes (Lopez et
al., 1991). It consists of a heterodimer with two polypep-
tide chains, i.e., a low affinity binding a-chain and a
nonbinding b-chain shared with the IL-3 and GM-CSF
receptors (Tavernier et al., 1991). Both chains belong to
the cytokine receptor superfamily (Bazan, 1990). The
a-subunit alone is sufficient for ligand binding and is
specific for IL-5, but association with the b-chain leads
to a 2- to 3-fold increase in binding affinity and allows
signaling to occur. Some IL-5 receptor mutants have
antagonistic effects and may act as receptor antagonists
(Tavernier et al., 1995). Transcriptional regulation of the
specific chain yields either membrane-bound or soluble
forms of the receptor (Tavernier et al., 1992). The mem-
branous form interacts with the b-subunit, leading to
substantial increases in affinity for IL-5 (Koike and
Takatsu, 1994). The soluble form is secreted in body
fluids, interacts with IL-5, and antagonizes the action of
IL-5 on target cells (Devos et al., 1993; Tavernier et al.,
1992). The expression of the IL-5 receptor is restricted to
eosinophils and their immediate precursors. An increase
in the number of both forms of IL-5 receptors in bron-
chial biopsies from asthmatics has been reported, with
the expression of IL-5 receptor mRNA being predomi-
nantly in eosinophils (Yasruel et al., 1997). Ligand bind-
ing to IL-5 receptors activates non-receptor protein ty-

rosine kinase and other protein kinases in eosinophils
(Bates et al., 1996; Taniguchi, 1995).

c. EFFECTS. IL-5 can influence the production, matu-
ration, and activation of eosinophils (Egan et al., 1996).
IL-5 acts predominantly at the later stages of eosinophil
maturation and activation (Clutterbuck et al., 1989;
Lopez et al., 1988). IL-5 can also prolong the survival of
eosinophils (Yamaguchi et al., 1988). IL-5 appears to be
the main cytokine involved in the development of eosin-
ophilia in vivo. Administration of exogenous IL-5 pro-
duces eosinophilia in many in vivo models (Iwama et al.,
1992). IL-5-transgenic mice, in which transcription of
IL-5 is coupled to the dominant control region of the
gene coding for the constitutive marker CD2, show life-
long eosinophilia in organs with predicted T cell expres-
sion, such as bone marrow, spleen, and peritoneum, with
fewer cells in the airway mucosa (Dent et al., 1990).
IL-5-knock-out transgenic mice behave normally, indi-
cating that eosinophils require other factors for degran-
ulation and subsequent tissue damage. Intratracheal
administration of another eosinophil chemotactic agent,
eotaxin, leads to further eosinophil accumulation in the
lungs and bronchial hyperresponsiveness, an effect not
observed in wild-type mice (Rothenberg et al., 1996).
IL-5 may cause eosinophils to be released from the bone
marrow, whereas local release of another chemoattrac-
tant may be necessary to cause tissue localization of
eosinophils (Collins et al., 1995). On the other hand, IL-5
instilled into the airways of patients with asthma in-
duces significant airway eosinophilia (Shi et al., 1997),
and inhaled IL-5 causes eosinophilia in induced sputum
and bronchial hyperresponsiveness but has no effect on
airway caliber (Shi et al., 1998). The eosinophil chemo-
tactic responses of bronchoalveolar lavage fluid of asth-
matics during the pollen season is accounted for by IL-5
and RANTES (Venge et al., 1996).

d. ROLE IN ASTHMA. IL-5 may play an important role in
eosinophil maturation, chemoattraction, and activation
in asthma and may underlie bronchial hyperreactivity.
It may also interact with other eosinophil chemoattrac-
tants and activators, such as chemokines, to activate
and induce chemoattraction of eosinophils (Rothenberg
et al., 1997; Collins et al., 1995). The expression of IL-5
in tissues and cells from patients with asthma is dis-
cussed above. Studies with IL-5 monoclonal antibodies
clearly support a role for IL-5 in asthma. Pretreatment
with anti-IL-5 monoclonal antibodies can suppress aller-
gen-induced airway eosinophilia (Chand et al., 1992;
Van Oosterhout et al., 1993; Mauser et al., 1993, 1995).
There is some debate regarding whether the IL-5-
induced eosinophilia is the direct cause of bronchial
hyperresponsiveness induced by allergen exposure.
There is an effect of anti-IL-5 antibodies on bronchial
hyperresponsiveness in some studies (Van Oosterhout et
al., 1993; Mauser et al., 1995), whereas other studies do
not report such an effect, despite inhibition of eosino-
philia (Corry et al., 1996). In IL-5-knock-out mice, both
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allergen-induced eosinophilia and airway hyperrespon-
siveness are abolished (Foster et al., 1996). The site of
IL-5 expression may be critical to eosinophil recruitment
and the development of airway hyperresponsiveness.
Studies of transgenic mice expressing IL-5 from lung
epithelial cells showed elevated levels of IL-5 in bron-
choalveolar lavage fluid and serum, lung histopatholog-
ical changes reminiscent of asthma, and base-line air-
way hyperresponsiveness (Lee et al., 1997). In addition
to the effect of IL-5 in mobilizing eosinophils from the
bone marrow, there is evidence for its effect as a regu-
lator of eosinophil homing and migration into tissues in
response to local chemokine release (Mould et al., 1997).

Studies of the use of anti-IL-5 antibodies in the treat-
ment of human asthma are currently underway. Studies
of the effect of systemic corticosteroid treatment in pa-
tients with worsening asthma indicate that there is a
reduction in the expression of IL-5 mRNA in the airway
mucosa that is associated with an improvement in
asthma (Robinson et al., 1993b). Cyclosporin A and ta-
crolimus (FK-506) (immunosuppressant agents some-
times used in the treatment of severe asthma) inhibit
the expression of IL-5 mRNA in activated human T
lymphocytes in response to phytohemagglutinin or phor-
bol esters (Rolfe et al., 1997).

5. Interleukin-13.
a. SYNTHESIS AND RELEASE. IL-13 is synthesized by

activated CD41 and CD81 T cells and is a product of
Th1, Th2, and Th0-like CD41 T cell clones (Minty et al.,
1993a). Both CD41 and CD81 T cell clones synthesize
IL-13 in response to antigen-specific or polyclonal stim-
uli (Zurawski and de Vries, 1994).

b. RECEPTORS. There is a close similarity between IL-4
and IL-13 receptors. An IL-4 receptor antagonist derived
from a mutant protein (Zurawski et al., 1993) is a potent
receptor antagonist of the biological activity of IL-4 and
also of IL-13. It particularly inhibits the effect of IL-13 in
inducing IgE synthesis in peripheral blood mononuclear
cells. There is evidence from cDNA cloning of the IL-13
receptor to suggest that the IL-4 receptor a-chain is a
component of the IL-13 receptor (Aman et al., 1996).
Despite this, these receptors appear to be distinct
(Zurawski and de Vries, 1994).

c. EFFECTS. IL-13 is a potent modulator of human
monocyte and B cell function (Minty et al., 1993a). IL-13
has profound effects on human monocyte morphological
features, surface antigen expression, antibody-depen-
dent cellular toxicity, and cytokine synthesis (McKenzie
et al., 1993; Minty et al., 1993a). In human monocytes
stimulated by lipopolysaccharide, the production of
proinflammatory cytokines, chemokines, and colony-
stimulating factors is inhibited by IL-13, whereas IL-1ra
secretion is increased (Zurawski et al., 1993). Production
of IL-1b, IL-6, IL-8, IL-10, IL-12, IFN-g, and GM-CSF
from blood monocytes is inhibited (Berkman et al.,
1996c; de Waal Malefyt et al., 1993), whereas MIP-1a,
IL-1, and TNF-a release from human alveolar macro-

phages is inhibited (Yanagawa et al., 1995; Berkman et
al., 1995). IL-13 inhibits the release of RANTES and
IL-8 from airway smooth muscle cells in vitro (John et
al., 1997, 1998a). These actions of IL-13 are similar to
those of IL-4 and IL-10. The suppressive effects of IL-13
and of IL-4 are not related to endogenous production of
IL-10. Similarly to IL-4, IL-13 decreases the transcrip-
tion of IFN-g and IL-12. It is possible that IL-13 acts like
IL-4 and suppresses the development of Th1 cells by
down-regulating IL-12 production by monocytes,
thereby favoring the development of Th2 cells (Le Gros
et al., 1990; Swain et al., 1990; Hsieh et al., 1994). IL-13,
unlike IL-4, fails to activate human T cells, which ap-
pears to be the result of a lack of IL-13 receptors on these
cells. IL-13 diminishes monocyte glucocorticoid receptor
binding affinity (Spahn et al., 1996). IL-13 activates
eosinophils by inducing the expression of CD69 cell sur-
face protein and prolonging eosinophil survival (Lutt-
mann et al., 1996).

IL-13 induces the expression of CD23 on purified hu-
man B cells and acts as a switch factor directing IgE
synthesis, similar to IL-4 (Punnonen et al., 1993; Cocks
et al., 1993). A mutant protein of IL-4, which is a potent
receptor antagonist of the biological activity of IL-4,
antagonizes IL-13 actions, blocking B cell proliferation
and IgE synthesis (Aversa et al., 1993). This mutant
protein of IL-4 may therefore have therapeutic potential
for the treatment of allergies.

d. ROLE IN ASTHMA. Increased expression of IL-13
mRNA has been reported in the airway mucosa of pa-
tients with atopic and nonatopic asthma (Humbert et al.,
1997a; Naseer et al., 1997). In addition, levels of IL-13
together with IL-4 are increased after segmental aller-
gen challenge of patients with asthma (Kroegel et al.,
1996). There is a significant correlation between eosin-
ophil counts and levels of IL-13.

6. Interleukin-15.
a. SYNTHESIS AND RELEASE. IL-15 is produced by both

CD41 and CD81 T cells after activation (Grabstein et al.,
1994). IL-15 mRNA is expressed in lung fibroblasts and
epithelial cell lines, as well as monocytes and human
blood-derived dendritic cells (Jonuleit et al., 1997).

b. RECEPTORS. IL-15 uses the b- and g-subunits of the
IL-2 receptor (Giri et al., 1994; Grabstein et al., 1994),
and both chains are needed for IL-15-mediated actions.
A high affinity IL-15 binding subunit has also been
described (Kennedy and Park, 1996). Mitogen-activated
macrophages, natural killer cells, and CD41 and CD81

T cells express IL-15 receptor a-chains, which can bind
IL-15 without requiring IL-2 receptor a- or b-chains
(Chae et al., 1996).

c. EFFECTS. IL-15 shares some of the properties of
IL-2, such as stimulation of the proliferation of T cells
and lymphokine-activated killer cells. However, there
are many other distinct effects of IL-15. IL-15 can induce
IL-8 and macrophage chemotactic peptide (MCP)-1 pro-
duction in human monocytes (Badolato et al., 1997). It
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also induces the release of soluble IL-2 receptor a-chain
from human blood mononuclear cells (Treiber Held et
al., 1996). It promotes angiogenesis in vivo (Angiolillo et
al., 1997). IL-15 can also activate neutrophils and delay
their apoptosis (Girard et al., 1996). IL-15 promotes the
synthesis of IL-5 from house dust mite-specific human T
cell clones (Mori et al., 1996), an effect inhibited by the
tyrosine kinase inhibitor herbimycin A. This indicates
that IL-15 produced at the site of allergic inflammation
may play a role in recruitment and activation of eosin-
ophils by inducing IL-5 production by T cells. IL-15 is
also a chemoattractant for human blood T lymphocytes,
an effect inhibited by an anti-IL-2 receptor b-chain an-
tibody (Wilkinson and Liew, 1995).

d. ROLE IN ASTHMA. There are no data specific to
asthma.

7. Interleukin-16.
a. SYNTHESIS AND RELEASE. IL-16, previously known as

lymphocyte chemoattractant factor, was first identified
as a product of peripheral blood mononuclear cells after
mitogen and histamine stimulation in vitro (Center et
al., 1983; Center and Cruikshank, 1982). IL-16 was sub-
sequently shown to be produced by CD81 T cells after
stimulation with histamine and serotonin in vitro
(Laberge et al., 1995, 1996). IL-16 can also be produced
by epithelial cells (Bellini et al., 1993), eosinophils (Lim
et al., 1996), and mast cells (Rumsaeng et al., 1997).

b. EFFECTS. IL-16 has specific activities on CD41 T
cells (Cruikshank et al., 1994). IL-16 selectively induces
migration of CD41 cells, including CD41 T cells and
CD4-bearing eosinophils (Rand et al., 1991a). IL-16 acts
as a growth factor for CD41 T cells and induces IL-2
receptors and MHC class II molecules on these cells
(Cruikshank et al., 1987).

c. ROLE IN ASTHMA. Elevated concentrations of IL-16
have been found in bronchoalveolar lavage fluid ob-
tained from asthmatic subjects after allergen challenge
(Cruikshank et al., 1995b). In stable atopic asthmatic
subjects, there is predominant expression of IL-16
mRNA and immunoreactivity in airway epithelium
(Laberge et al., 1997). IL-16-like activity has been de-
tected in cell culture supernatants generated from his-
tamine-stimulated tracheal epithelial cells obtained
from asthmatic subjects (Bellini et al., 1993).

8. Interleukin-17. IL-17 is a CD41 T cell-derived cyto-
kine that stimulates NF-kB and IL-6 production in fi-
broblasts and co-stimulates T cell proliferation (Yao et
al., 1995a). It stimulates epithelial, endothelial, and fi-
broblastic cells to secrete cytokines such as IL-6, IL-8,
GM-CSF, and PGE2 (Fossiez et al., 1996; Yao et al.,
1995b). In the presence of IL-17, fibroblasts can sustain
the proliferation of CD341 hematopoietic progenitors
and their preferential maturation into neutrophils.
IL-17 increases the release of NO in cartilage from pa-
tients with osteoarthritis, via NF-kB activation (Attur et
al., 1997).

C. Proinflammatory Cytokines

Proinflammatory cytokines are involved in most types
of inflammation and appear to amplify and perpetuate
the ongoing inflammatory response. They may be impor-
tant in disease severity and resistance to anti-inflam-
matory therapy in asthma.

1. Interleukin-1.
a. SYNTHESIS AND RELEASE. There are two distinct

forms of IL-1 (a and b), produced from two different
genes. Although the amino acid sequence homology be-
tween human IL-1a and IL-1b is only 20%, the mole-
cules bind to the same receptor and have nearly identi-
cal properties. IL-1b (17.5 kDa) is synthesized as a
larger precursor molecule with a molecular mass of 31
kDa. IL-1b is released into the extracellular space and
the circulation. The most active form of IL-1b is its
cleaved mature form, resulting from the action of a cys-
teine protease (IL-1-converting enzyme) (Thornberry et
al., 1992; Cerretti et al., 1992). In contrast, IL-1a is
usually retained intracellularly.

IL-1 is produced by a variety of cells, including mono-
cytes/macrophages, fibroblasts, B cells, both Th1 and
Th2-like T cell lines, natural killer cells, neutrophils,
endothelial cells, and vascular smooth muscle cells. The
major source of IL-1 in most tissues is stimulated mono-
cytes/macrophages. Monocytes produce 10 times more
IL-1b than IL-1a (Nishida et al., 1987; March et al.,
1985); IL-1a is mostly cell-associated, whereas IL-1b is
mostly released. Eosinophils can produce IL-1a (Weller
et al., 1993), whereas human epithelial cells can aug-
ment IL-1b expression when exposed to the air pollutant
nitrogen dioxide (Devalia et al., 1993). A wide variety of
stimuli, including IL-1 itself (Dinarello and Mier, 1987),
TNF-a (Turner et al., 1989), GM-CSF (Xu et al., 1989),
endotoxin, and phagocytosis, can increase the expres-
sion of IL-1 in monocytes/macrophages. IL-1 production
by endothelial and vascular smooth muscle cells can also
be induced by IL-1b, TNF-a, or endotoxin. On the other
hand, PGE2 and corticosteroids can attenuate the capac-
ity of endotoxin and other stimuli to release IL-1,
through inhibition of transcription and through a de-
crease in IL-1 mRNA stability (Knudsen et al., 1986;
Pennington et al., 1992; Kern et al., 1988). An inhibitor
of IL-1-converting enzyme that inhibits the inflamma-
tory responses to IL-1b has been described (Ray et al.,
1992).

b. RECEPTORS. Two IL-1 receptors have been de-
scribed. The type I and type II receptors are transmem-
brane glycoproteins that bind IL-1a, IL-1b, and IL-1ra.
The type I IL-1 receptor is expressed on many cells,
including T cells, B cells, monocytes, natural killer cells,
basophils, neutrophils, eosinophils, dendritic cells, fibro-
blasts, endothelial cells, and vascular endothelial cells,
whereas the type II receptor is also expressed on T cells,
B cells, and monocytes. An IL-1 receptor accessory pro-
tein has been described (Greenfeder et al., 1995), which,
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when associated with the type I IL-1 receptor, increases
its affinity for IL-1b. Only the type I receptor transduces
a signal in response to IL-1 (McKean et al., 1993); the
type II IL-1 receptor, on binding to IL-1, does not. There-
fore, the type II IL-1 receptor may act as a decoy recep-
tor, preventing IL-1 from binding to the type I IL-1
receptor (Colotta et al., 1994). IL-1 signal transduction
pathways are associated with TNF receptor-associated
factor (TRAF) adaptor proteins, particularly TRAF-6
(Cao et al., 1996a). TRAF-6 associates with IL-1 recep-
tor-associated kinase, which is recruited to and acti-
vated by the IL-1 receptor complex (Cao et al., 1996b).

A soluble receptor (found in normal human serum and
secreted by the human B cell line RAJI) that binds
preferentially to IL-1b has been described (Symons et
al., 1995). IL-1 down-regulates the numbers of IL-1 re-
ceptors (Matsushima et al., 1986; Mizel et al., 1981),
whereas PGE2 increases the expression of IL-1 receptors
(Spriggs et al., 1990; Bonin et al., 1990). PDGF can
increase IL-1 receptor expression and IL-1 receptor
mRNA levels in fibroblasts (Chiou et al., 1989; Bonin
and Singh, 1988), whereas IL-4 increases receptor ex-
pression on T cells (Lacey and Erdmann, 1990). TGF-b
may decrease the expression of IL-1 receptors (Dubois et
al., 1990) and may also uncouple the response of the
cells to IL-1, without affecting IL-1 receptor expression
or IL-1 binding (Stoeck et al., 1990).

Some of the effects of IL-1 can be mimicked by agents
that increase cyclic AMP levels and activate protein
kinase A (Shirakawa et al., 1986; Onozaki et al., 1985),
whereas others can be mimicked by agents that activate
PKC (Emery et al., 1989; Suzuki and Cooper, 1985;
Shackelford and Trowbridge, 1984). Many cells produce
cyclic AMP in response to IL-1. Activation of protein
kinase A by an IL-1-induced increase in cyclic AMP
levels may lead to increased transcription of several
cellular genes. These may turn on activating transcrip-
tion factors that bind to a cis-acting cyclic AMP-respon-
sive element (Yamamoto et al., 1988) and NF-kB,
through the phosphorylation of an inhibitor protein,
IkB. AP-1 activity may also be induced by IL-1 (Muegge
et al., 1989) through PKC activation. Phosphorylation of
several cellular proteins through the action of PKC-
independent serine/threonine kinase may also occur
upon activation of the IL-1 receptor (Kaur and Sak-
latvala, 1988).

c. EFFECTS. IL-1 induces fever, like other endogenous
pyrogens such as TNF and IL-6. It causes leukocytosis
by release of neutrophils from the bone marrow and
induces the production of other cytokines, including
IL-6.

IL-1 is a growth factor for mature and immature thy-
mocytes and a cofactor in the induction of proliferation
of and IL-2 secretion by peripheral blood CD41 and
CD81 T cells after engagement of their antigen recep-
tors. IL-1b is an important growth factor for Th2 cells in
response to antigen-primed antigen-presenting cells,

but not for Th1 cells (Greenbaum et al., 1988). Synergis-
tic effects between IL-1 and IL-6 have been reported for
the activation of T cells (Helle et al., 1989; Elias et al.,
1989; Sironi et al., 1989). IL-1 also functions as a growth
factor for B cells (Paul and Ohara, 1987; Vink et al.,
1988; Lipsky et al., 1983). IL-1 induces many other cy-
tokines, such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8,
RANTES, GM-CSF, IFN-g, PDGF, and TNF, in a variety
of cells. IL-1 induces fibroblasts to proliferate (Schmidt
et al., 1982), an effect that may be the result of release of
PDGF (Raines et al., 1989), it increases PG synthesis
and collagenase secretion (Postlethwaite et al., 1983;
Mizel et al., 1981), and it increases the synthesis of
fibronectin and types I, III, and IV collagen (Dinarello
and Savage, 1989). IL-1b together with TNF-a and
IFN-g can induce or up-regulate the expression of
ICAM-1 and VCAM-1 on endothelial cells and on respi-
ratory epithelial cells, which may lead to increased ad-
hesion of eosinophils to the vascular endothelium and
respiratory epithelium (Godding et al., 1995; Pober et al.,
1986). IL-1-induced adhesion of eosinophils to endothe-
lial cell monolayers is inhibited by anti-ICAM and anti-
VCAM antibodies (Bochner et al., 1991).

d. ROLE IN ASTHMA. Levels of IL-1b in bronchoalveolar
lavage fluid from patients with asthma have been found
to be elevated, compared with those in fluid from non-
asthmatic volunteers; there is also an increase in IL-1b-
specific mRNA transcripts in bronchoalveolar lavage
fluid macrophages (Borish et al., 1992). In addition, pa-
tients with symptomatic asthma show increased levels
of IL-1b in bronchoalveolar lavage fluid, compared with
patients with asymptomatic asthma (Broide et al.,
1992b). Increased expression of IL-1b in asthmatic air-
way epithelium has been reported, together with an
increased number of macrophages expressing IL-1b
(Sousa et al., 1996). Selective inhibition of IL-1b expres-
sion in the epithelium of the airway wall of patients with
asthma, without a reduction in IL-1ra expression, after
corticosteroid therapy has been described (Sousa et al.,
1997).

IL-1b induces airway neutrophilia and selectively in-
creases airway responsiveness to bradykinin in rats
(Tsukagoshi et al., 1994a); these effects are mediated in
part through the generation of ROS (Tsukagoshi et al.,
1994b). IL-1b can induce eosinophil accumulation in rat
skin, an effect that is blocked by an anti-IL-8 antibody
(Sanz et al., 1995). Of interest, IL-1b has profound ef-
fects on the coupling of the b2-adrenergic receptor to
adenylyl cyclase, an effect that is mediated through the
up-regulation of inhibitory G proteins (Koto et al., 1996).

2. Tumor necrosis factor-a.
a. SYNTHESIS AND RELEASE. Two major forms of TNF

exist, i.e., TNF-a and TNF-b, which have only 35%
amino acid homology but bind to similar receptors.
TNF-a (previously known as cachectin) is expressed as a
type II membrane protein attached by a signal anchor
transmembrane domain in the propeptide (Gearing et
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al., 1994). TNF-a is released from cells by proteolytic
cleavage of the membrane-bound form by a metallopro-
teinase (TNF-converting enzyme). Inactivation of the
TNF-converting enzyme gene compromises the ability of
cells to produce soluble TNF-a. TNF-a is produced by
many cells, including macrophages, T lymphocytes,
mast cells, and epithelial cells, but the principal source
is macrophages. The secretion of TNF-a by monocytes/
macrophages is greatly enhanced by other cytokines,
such as IL-1, GM-CSF, and IFN-g. Human eosinophils
are also capable of releasing TNF-a (Costa et al., 1993),
together with airway epithelial cells (Devalia et al.,
1993). TNF-b is mainly produced by activated lympho-
cytes via a similar pathway.

b. RECEPTORS. TNF-a interacts with two cell surface
receptors, i.e., p55 and p75. Both receptors are members
of the nerve growth factor receptor superfamily. Soluble
forms of human p55 and p75 receptors have been de-
scribed; they are derived from the extracellular domains
of the receptors and may act as inhibitors of TNF effects
(Nophar et al., 1990). TNF receptors are distributed on
nearly all cell types except red blood cells and resting T
lymphocytes. The p75 receptor is more restricted to he-
matopoietic cells. p75 is the principal receptor released
by human alveolar macrophages and monocytes in the
presence of IFN-g (Galve de Rochemonteix et al., 1996).

Several signaling pathways leading to activation of
different transcription factors, such as NF-kB and AP-1,
have been identified. The TRAF family of adaptor pro-
teins, particularly TRAF-2, is involved in signaling from
the TNF receptors (Rothe et al., 1995). TRAF-2 may also
play a role in the pathway of signal transduction from
the TNF receptors to activation of the MAP kinase cas-
cade. TNF activates a sphingomyelinase, resulting in
the release of ceramide from sphingomyelin, which in
turn activates a Mg21-dependent protein kinase
(Mathias et al., 1991).

c. EFFECTS. Many of the actions of TNF-a occur in
combination with other cytokines as part of the cytokine
network, and the effects of TNF-a are very similar to
those of IL-1b, because there are close interactions be-
tween the signal transduction pathways of these two
cytokines (Eder, 1997). TNF-a potently stimulates air-
way epithelial cells to produce cytokines, including
RANTES, IL-8, and GM-CSF (Berkman et al., 1995c;
Kwon et al., 1994a, 1995; Cromwell et al., 1992), and it
increases the expression of ICAM-1 (Tosi et al., 1992).
TNF-a also has synergistic effects with IL-4 and IFN-g
to increase VCAM-1 expression on endothelial cells
(Thornhill et al., 1991). This has the effect of increasing
the adhesion of inflammatory leukocytes, such as neu-
trophils and eosinophils, at the airway surface. TNF-a
enhances the expression of class II MHC molecules on
antigen-presenting cells. In addition, it enhances the
release of IL-1 by these cells. It acts as a co-stimulatory
factor for activated T lymphocytes, enhancing prolifera-
tion and expression of IL-2 receptors. TNF-a also inhib-

its bone resorption and synthesis and induces prolifera-
tion of fibroblasts (Rogalsky et al., 1992). TNF-a
stimulates bronchial epithelial cells to produce tenascin,
an extracellular matrix glycoprotein (Harkonen et al.,
1995).

d. ROLE IN ASTHMA. TNF-a may have an important
amplifying effect in asthmatic inflammation (Kips et al.,
1993; Shah et al., 1995). There is evidence for increased
TNF-a expression in asthmatic airways (Bradding et al.,
1994), and IgE triggering in sensitized lungs leads to
increased expression in epithelial cells in both rat and
human lung (Ohkawara et al., 1992; Ohno et al., 1990).
Increased TNF-a mRNA expression in bronchial biop-
sies from asthmatic patients has been reported (Ying et
al., 1991; Bradding et al., 1994). TNF-a is also present in
the bronchoalveolar lavage fluid from asthmatic pa-
tients (Broide et al., 1992b), and TNF-a release from
bronchoalveolar leukocytes from asthmatic patients is
increased (Cembrzynska-Norvak et al., 1993). TNF-a is
also released from alveolar macrophages from asthmatic
patients after allergen challenge (Gosset et al., 1991).
Furthermore, both blood monocytes and alveolar macro-
phages show increased gene expression of TNF-a after
IgE triggering in vitro, and this effect is enhanced by
IFN-g (Gosset et al., 1992). Alveolar macrophages of
asthmatics undergoing late-phase responses after aller-
gen challenge release more TNF-a and IL-6 ex vivo than
do those from patients with only an early response (Gos-
set et al., 1991). There are polymorphisms in the pro-
moter of the TNF gene that may be more frequently
associated with asthma (Moffatt and Cookson, 1997).

Infusion of TNF-a causes increased airway respon-
siveness in Brown-Norway rats (Kips et al., 1992), and
inhalation of TNF-a by normal human subjects results
in increased airway responsiveness at 24 h after inha-
lation, as well as an increase in sputum neutrophils
(Thomas et al., 1995). TNF-a may be an important me-
diator in the initiation of chronic inflammation, by acti-
vating the secretion of cytokines from a variety of cells in
the airways. Several approaches to inhibition of TNF-a
synthesis or effects, including the use of monoclonal
antibodies to TNF or soluble TNF receptors, in asthma
are now under investigation.

3. Interleukin-6.
a. SYNTHESIS AND RELEASE. IL-6 was originally de-

scribed for its antiviral activity, its effects on hepato-
cytes, and its growth-promoting effects on B lympho-
cytes and plasmacytomas. It is secreted by monocytes/
macrophages, T cells, B cells, fibroblasts, bone marrow
stromal cells, keratinocytes, and endothelial cells. Epi-
thelial cells also appear to produce IL-6 (Mattoli et al.,
1991). Human airway smooth muscle cells, upon activa-
tion with IL-1b or TGF-b, can release IL-6 (Elias et al.,
1997). Major basic protein secreted from eosinophils can
interact with IL-1 or TGF to increase IL-6 release from
fibroblasts (Rochester et al., 1996).
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b. RECEPTORS. High affinity IL-6 receptors are formed
by the association of the IL-6 receptor a-chain (which
binds IL-6 with low affinity) with a b-chain (gp130)
(which does not bind IL-6 but associates with the
a-chain/IL-6 complex and is responsible for signal trans-
duction) (Kishimoto et al., 1992).

c. EFFECTS. IL-6 is a pleiotropic cytokine whose role in
asthma remains unclear. IL-6 has growth-regulatory ef-
fects on many cells and is involved in T cell activation,
growth, and differentiation. It is a terminal differentia-
tion factor for B cells and induces Ig (IgG, IgA, and IgM)
secretion (Akira et al., 1993). IL-6 is an important cofac-
tor in IL-4-dependent IgE synthesis (Vercelli et al.,
1989). IL-6 may also have anti-inflammatory effects.
IL-6 can inhibit the expression and release of IL-1 and
TNF from macrophages in vitro and can inhibit endo-
toxin-induced TNF production and neutrophil influx in
the airways in vivo (Ulich et al., 1991a,b; Schindler et al.,
1990a). IL-6-transgenic mice demonstrate lymphocytic
infiltration around airways, which is associated with
reduced airway responsiveness (DiCosmo et al., 1994).

d. ROLE IN ASTHMA. IL-6 is released in asthma. There
is evidence for increased release of IL-6 from alveolar
macrophages from asthmatic patients after allergen
challenge (Gosset et al., 1991) and increased basal re-
lease, compared with nonasthmatic subjects (Broide et
al., 1992b). IgE-dependent triggering stimulates the se-
cretion of IL-6 from both blood monocytes and alveolar
macrophages in vitro (Gosset et al., 1992). Increased
levels of IL-6 can be measured in nasal washings from
children after rhinovirus infection (Zhu et al., 1996). In
addition, IL-6 mRNA expression and an increase in
NFkB DNA-binding activity can be induced by rhinovi-
rus infection of cells in vitro.

4. Interleukin-11.
a. SYNTHESIS AND RELEASE. IL-11, which is distantly

related to IL-6, is produced by fibroblasts and human
airway smooth muscle cells when they are stimulated by
IL-1 and TGF-b1 (Maier et al., 1993; Elias et al., 1997).

b. RECEPTORS. A single class of specific receptors on
mouse cells has been described (Yin et al., 1992). The
receptor has not yet been cloned. Like IL-6, IL-11 uses
the IL-6 signal transducer gp130. Upon ligand binding,
phosphorylation of tyrosine residues in several proteins
occurs (Yin and Yang, 1993; Yin et al., 1994).

c. EFFECTS. Although IL-11 cDNA was cloned on the
basis of IL-6-like bioactivity, IL-11 has biological fea-
tures distinct from those of IL-6. IL-11 promotes multi-
ple stages of human megakaryocytopoeisis and throm-
bopoeisis. In combination with SCF or IL-4, IL-11
supports the generation of B cells (similarly to IL-6)
(Hirayama et al., 1992). IL-11 induces the production of
acute-phase reactants (Baumann and Schendel, 1991).
IL-11 induces the synthesis of the tissue inhibitor of
metalloproteinase-1. It inhibits IL-12 and TNF-a pro-
duction from monocytes/macrophages (Leng and Elias,

1997), effects mediated at the transcriptional level by
inhibition of NF-kB.

d. ROLE IN ASTHMA. IL-11 is released into bronchoal-
veolar lavage fluid during upper respiratory viral infec-
tions in humans and induces nonspecific bronchial hy-
perresponsiveness in mice (Einarsson et al., 1996).
Targeted expression of IL-11 in mouse airways leads to
a T cell inflammatory response with airway remodeling,
local accumulation of myofibroblasts, and airway ob-
struction (Tang et al., 1996).

5. Granulocyte-macrophage colony-stimulating factor.
a. SYNTHESIS AND RELEASE. GM-CSF is one of the col-

ony-stimulating factors that act to regulate the growth,
differentiation, and activation of hematopoietic cells of
multiple lineages. GM-CSF is produced by several air-
way cells, including macrophages, eosinophils, T lym-
phocytes, fibroblasts, endothelial cells, airway smooth
muscle cells, and epithelial cells.

b. RECEPTORS. The GM-CSF receptor consists of a low
affinity a-chain and a b-chain that is shared with the
IL-3 and IL-5 receptor a-chains (Kitamura et al., 1991;
Hayashida et al., 1990). These receptors are usually
distributed on granulocytes, monocytes, endothelial
cells, and fibroblasts. Up-regulation of the expression of
GM-CSF receptor a-chain mRNA in macrophages in air-
way biopsies from patients with nonatopic asthma, but
not those with atopic asthma, has been reported
(Kotsimbos et al., 1997). Certain analogues of GM-CSF
bind to the a-chain of the receptor, but not to the b-chain
complex, without agonist effects, indicating that these
mutants could act as antagonists of GM-CSF (Hercus et
al., 1994).

c. EFFECTS. GM-CSF is a pleiotropic cytokine that can
stimulate the proliferation, maturation, and function of
hematopoietic cells. GM-CSF may be involved in prim-
ing inflammatory cells, such as neutrophils and eosino-
phils. It can prolong the survival of eosinophils in cul-
ture (Hallsworth et al., 1992). GM-CSF can enhance the
release of superoxide anions and cys-LTs from eosino-
phils (Silberstein et al., 1986). GM-CSF can also induce
the synthesis and release of several cytokines, including
IL-1 and TNF-a, from monocytes. GM-CSF induces non-
hematopoietic cells, such as endothelial cells, to migrate
and proliferate (Bussolino et al., 1989).

d. ROLE IN ASTHMA. There is evidence for increased
expression of GM-CSF in the epithelium in bronchial
biopsies from asthmatic patients (Sousa et al., 1993) and
in T lymphocytes and eosinophils after endobronchial
challenge with allergen (Broide and Firestein, 1991;
Broide et al., 1992a). Increased circulating concentra-
tions of GM-CSF have been detected in patients with
acute severe asthma (Brown et al., 1991), and peripheral
blood monocytes from asthmatic patients secrete in-
creased amounts of GM-CSF (Nakamura et al., 1993). In
addition to its release in asthmatic airways, GM-CSF
can be demonstrated to have various effects in asthma.
GM-CSF has been found to be the major LTC4-enhanc-
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ing activity for eosinophils in the supernatant of cul-
tured asthmatic alveolar macrophages (Howell et al.,
1989). Media obtained from cultured bronchial epithelial
cells from asthmatics increase the viability, superoxide
production, and LTC4 production of eosinophils in vitro
(Soloperto et al., 1991), an effect that is abolished by a
neutralizing antibody to GM-CSF. Transient expression
of the GM-CSF gene in the epithelium of rats, using an
adenoviral vector, leads to an accumulation of eosino-
phils and macrophages that is associated with irrevers-
ible fibrosis (Xing et al., 1996). This indicates that GM-
CSF may be involved in the chronic eosinophilia and
airway remodeling of asthma.

6. Stem cell factor.
a. SYNTHESIS AND RELEASE. SCF (previously known as

c-Kit ligand) is produced by bone marrow stromal cells,
fibroblasts (including bronchial subepithelial myofibro-
blasts and nasal polyp fibroblasts), and epithelial cells,
such as nasal polyp epithelial cells (Kim et al., 1997;
Zhang et al., 1996; Galli et al., 1994).

b. RECEPTORS. The receptor for SCF is c-Kit, a receptor
protein kinase. It is expressed on early hematopoietic
progenitor cells and allows a synergistic response to SCF
and lineage-committing growth factors (such as GM-
CSF for myelocytes). Expression of c-Kit decreases with
cell maturation and is absent from mature cells released
from the bone marrow. However, c-Kit expression in-
creases on mast cells as they mature, and receptors are
abundantly expressed on the surface of mast cells. c-Kit
is also expressed on human eosinophils (Yuan et al.,
1997).

c. EFFECTS. SCF acts as a survival factor for the early
hematopoietic progenitor cells and synergizes with other
growth factors to regulate the proliferation and differ-
entiation of cells. SCF is a major growth factor for hu-
man mast cells (Valent et al., 1992; Mitsui et al., 1993).
Two alternative splice variants account for the different
forms of SCF; one is primarily membrane bound and the
other is primarily soluble, after being released from the
cell surface by proteolysis (Flanagan et al., 1991).
CD341 bone marrow cells cultured in vitro with recom-
binant human SCF and IL-3 induce the development of
mast cells and other hematopoietic lineages (Kirshen-
baum et al., 1992).

Membrane-bound SCF may influence mast cell adhe-
sion (Kinashi and Springer, 1994), and soluble SCF is
chemotactic for mast cells (Nilsson et al., 1994). Removal
of either soluble or membrane-bound SCF from mast
cells causes the mast cells to undergo apoptosis (Iemura
et al., 1994; Mekori et al., 1993). SCF has a modest
capacity for directly activating mast cells but is usually
more active in priming mast cell responses to other
stimuli, such as IgE-stimulated mediator release
(Columbo et al., 1992; Wershil et al., 1992; Bischoff and
Dahinden, 1992). SCF causes the release of small
amounts of IL-4 and TNF-a from human lung mast cells
(Gibbs et al., 1997). SCF stimulates very late activation

antigen-4-mediated cell adhesion to fibronectin and
VCAM-1 on human eosinophils (Yuan et al., 1997).

d. ROLE IN ASTHMA. There is very little information on
the expression of SCF in asthmatic airways. SCF is
expressed in the epithelium of nasal polyps removed
from patients with allergic rhinitis (Kim et al., 1997).

D. Inhibitory Cytokines

Although most cytokines initiate, amplify, or perpet-
uate inflammation, some cytokines appear to have an
inhibitory or anti-inflammatory effect on allergic inflam-
mation, either by blocking the expression or effects of
inflammatory cytokines or by shifting the immune re-
sponse away from the Th2 pattern of cytokines (Barnes
and Lim, 1998).

1. Interleukin-10.
a. SYNTHESIS AND RELEASE. IL-10, previously known as

cytokine synthesis inhibitor factor, was originally iden-
tified as a product of murine Th2 clones that suppressed
the production of cytokines by Th1 clones responding to
antigen stimulation (Fiorentino et al., 1989). In humans,
Th0, Th1, and Th2-like CD41 T cell clones, cytotoxic T
cells, activated monocytes, and peripheral blood T cells,
including CD41 and CD81 T cells, have the capacity to
produce IL-10 (Spits and de Waal Malefyt, 1992; Enk
and Katz, 1992). Mast cells also have the capacity to
produce IL-10. Constitutive IL-10 secretion occurs in
healthy lungs, with the major source being alveolar mac-
rophages; however, circulating monocytes appear to be
able to secrete more IL-10 than alveolar macrophages
(Berkman et al., 1995a).

b. RECEPTORS. The IL-10 receptor is a member of the
class II subgroup of cytokine receptors (the IFN receptor
family). The IL-10 receptor has been characterized and
cloned from a human lymphoma cell line (Liu et al.,
1994); it is expressed in several lymphoid and myeloid
cell types (Tan et al., 1993) and in natural killer cells
(Carson et al., 1995). The IL-10 receptor is highly effec-
tive in recruiting the signaling pathways of IL-6-type
cytokine receptors, including signal transduction-acti-
vated transcription factors 1 and 3 (Lai et al., 1996). The
inhibitory effects of IL-10 on monocytes appear to be
dependent on NF-kB (Wang et al., 1995).

c. EFFECTS. IL-10 is a pleiotropic cytokine that can
exert either immunosuppressive or immunostimulatory
effects on a variety of cell types. IL-10 is a potent inhib-
itor of monocyte/macrophage function, suppressing the
production of several proinflammatory cytokines, in-
cluding TNF-a, IL-1b, IL-6, MIP-1a, and IL-8 (Seitz et
al., 1995; de Waal Malefyt et al., 1991a; Fiorentino et al.,
1991), although the release of MCP-1 is increased (Seitz
et al., 1995). IL-10 inhibits monocyte MHC class II,
B7.1/B7.2, and CD23 expression and accessory cell func-
tion. Accessory signals mediated by B7 molecules
through CD28 on the surface of T cells are essential
for T cell activation. Expression of IL-10 by antigen-
presenting cells may be an established pathway for the
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induction of antigen-specific tolerance, such as that to
allergens (de Waal Malefyt et al., 1991b). In contrast,
IL-10 up-regulates the monocyte expression of IL-1ra,
another anti-inflammatory cytokine (de Waal Malefyt et
al., 1992). IL-10 suppresses the synthesis of superoxide
anions and NO by activated monocytes/macrophages
(Cunha et al., 1992). An anti-IL-10 antibody enhances
the release of cytokines from activated monocytes, sug-
gesting that this cytokine may play an inhibitory role
when the cell is stimulated (de Waal Malefyt et al.,
1991a). IL-10 inhibits the stimulated release of RAN-
TES and IL-8 from human airway smooth muscle cells
in culture (John et al., 1997, 1998a). IL-10 inhibits IFN-g
and IL-2 production by Th1 lymphocytes (Fiorentino et
al., 1989) and IL-4 and IL-5 production by Th2 cells, by
interfering with B7/CD28-dependent signals (Moore et
al., 1993; Schandene et al., 1994). IL-10 also inhibits
eosinophil survival and IL-4-induced IgE synthesis. On
the other hand, IL-10 acts on B cells to enhance their
viability, cell proliferation, Ig secretion (with the isotype
switch), and class II MHC expression. IL-10 is also a
growth co-stimulator for thymocytes and mast cells
(Thompson-Snipes et al., 1991), as well as an enhancer
of cytotoxic T cell development (Chen and Zlotnik, 1991).
IL-10 also activates the transcription of genes for mast-
cell derived proteases. IL-10 enhances the production of
the tissue inhibitor of metalloproteinases in monocytes
and tissue macrophages, while decreasing metallopro-
teinase biosynthesis (Lacraz et al., 1995).

d. ROLE IN ASTHMA. There is significantly less IL-10
mRNA and protein expressed in alveolar macrophages
from asthmatic subjects, compared with those from non-
asthmatic individuals (John et al., 1998b; Borish et al.,
1996). Triggering of CD23 molecules by anti-CD23
monoclonal antibodies induces IL-10 production by hu-
man monocytes (Dugas et al., 1996). An IL-10 polymor-
phism of the transcription initiation site could be re-
sponsible for reduced IL-10 release. Patients with severe
asthma are more likely to exhibit polymorphisms in the
promoter region that are associated with lower produc-
tion of IL-10 (Lim et al., 1998). Other studies indicate
that inhaled corticosteroid therapy can restore the re-
duced IL-10 release from macrophages from asthmatic
patients (John et al., 1998b), and theophylline also in-
creases IL-10 secretion (Mascali et al., 1996). On the
other hand, some studies have indicated that there are
increased numbers of macrophages and T cells express-
ing IL-10 mRNA in bronchoalveolar lavage fluid from
patients with asthma (Robinson et al., 1996).

IL-10 inhibits the late response and the influx of eo-
sinophils and lymphocytes after allergen challenge in
Brown-Norway rats (Woolley et al., 1994). Coinstillation
of IL-10 by the intranasal route significantly inhibits the
peritoneal and lung eosinophilia induced by ovalbumin
in immunized mice (Zuany Amorim et al., 1995, 1996).
Given its anti-inflammatory properties and these effects
in animal models of allergic inflammation, IL-10 may

have beneficial effects in the treatment of asthma (Pre-
tolani and Goldman, 1997). However, no studies of such
effects have been performed. Administration of IL-10 to
normal volunteers induced a decrease in circulating
CD21, CD31, CD41, and CD81 lymphocytes, with sup-
pression of mitogen-induced T cell proliferation and re-
duction of TNF-a and IL-1b production from whole blood
stimulated with endotoxin ex vivo (Chernoff et al., 1995).

2. Interleukin-1 receptor antagonist. IL-1ra has been
isolated from supernatants of monocytes cultured on
aggregated Ig or with immune complexes (Arend et al.,
1985, 1989), from alveolar macrophages (Galve de
Rochemonteix et al., 1990), and from urine of patients
with fever or myelomonocytic leukemia (Barak et al.,
1986; Seckinger et al., 1990; Balavoine et al., 1986).
IL-1ra shares 26 and 19% amino acid homology with
IL-1a and IL-1b, respectively. It binds to the IL-1 recep-
tor with affinity similar to that IL-1a or IL-1b (Seck-
inger et al., 1987), and it inhibits most effects of IL-1 on
cells, such as thymocyte proliferation, IL-2 synthesis by
T cells, and PGE2 and collagenase production by fibro-
blasts (Hannum et al., 1990; Seckinger et al., 1987; Bien-
kowski et al., 1990; Arend et al., 1990). IL-1ra is prefer-
entially produced by alveolar macrophages, compared
with monocytes (Monick et al., 1987), which may under-
lie the diminished IL-1 bioactivity exhibited by alveolar
macrophages, compared with monocytes (Monick et al.,
1987; Kern et al., 1988; Wewers et al., 1984). Other IL-1
receptor inhibitors have been described (Muchmore and
Decker, 1985; Giri et al., 1990).

IL-1ra blocks proliferation of Th2 but not Th1 clones
in vitro (Abbas et al., 1991). Increased expression of
IL-1b and IL-1ra in asthmatic airway epithelium has
been reported (Sousa et al., 1996). Although the expres-
sion of IL-1b is reduced after treatment with inhaled
corticosteroids, IL-1ra levels are unchanged, thus shift-
ing the balance away from inflammation (Sousa et al.,
1997). In a human airway epithelial cell line, corticoste-
roids increase the expression of IL-1ra (Levine et al.,
1996). In an ovalbumin-sensitized guinea pig model,
aerosol administration of IL-1ra immediately before al-
lergen challenge results in protection against bronchial
hyperreactivity and accumulation of pulmonary eosino-
phils (Watson et al., 1993). In a similar model, the late-
phase response is inhibited and the number of hypo-
dense eosinophils in bronchoalveolar lavage fluid is
decreased (Okada et al., 1995). Trials of IL-1ra in the
treatment of asthma are underway.

3. Interferon-g.
a. SYNTHESIS AND RELEASE. IFN-g was originally iden-

tified as a product of mitogen-stimulated T lymphocytes
that inhibited viral replication in fibroblasts. The only
known sources of IFN are CD41 and CD81 T cells and
natural killer cells.

b. RECEPTORS. The IFN-g receptor is a single trans-
membrane protein, a member of the cytokine receptor
type II superfamily. Although the receptor binds IFN-g
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with high affinity, signal transduction requires a
species-specific accessory protein that associates with
the extracellular domain of the receptor. The receptor is
expressed on T cells, B cells, monocytes/macrophages,
dendritic cells, granulocytes, and platelets. Epithelial
and endothelial cells also express these receptors.

c. EFFECTS. IFN-g has extensive and diverse immuno-
regulatory effects on various cells. It is produced by Th1
cells and exerts an inhibitory effect on Th2 cells (Romag-
niani, 1990). IFN-g inhibits antigen-induced eosinophil
recruitment in mice (Nakajima et al., 1993). However,
IFN-g may also have proinflammatory effects and may
activate airway epithelial cells to release cytokines and
express adhesion molecules (Look et al., 1992). IFN-g
has an amplifying effect on the release of TNF-a from
alveolar macrophages that is induced by IgE triggering
or by endotoxin (Gifford and Lohmann-Matthess, 1987;
Gosset et al., 1992), and it increases the expression of
class I and class II MHC molecules on macrophages and
epithelial cells. IFN-g is a powerful and relatively spe-
cific inhibitor of IL-4-induced IgE and IgG4 synthesis by
B cells.

IFN-g increases the production of IL-1, PAF, and
hydrogen peroxide in monocytes, in addition to down-
regulating IL-8 mRNA expression, which is up-regu-
lated by IL-2 (Gusella et al., 1993; Sen and Lenggel,
1992; Billiau and Dijkmans, 1990). IFN-g also syner-
gizes with the effects of TNF-a on the production of
RANTES from airway smooth muscle cells (John et al.,
1997). On the other hand, IFN-g inhibits IL-10 produc-
tion from monocytes (Chomarat et al., 1993), which leads
to an up-regulation of TNF-a transcription (Donnelly et
al., 1995). Thus, IFN-g promotes cell-mediated cytotoxic
responses while inhibiting allergic inflammation and
IgE synthesis. IFN-g up-regulates class II molecules on
monocytes/macrophages and dendritic cells and induces
de novo expression on epithelial, endothelial, and other
cells, thus making them capable of antigen presentation.

d. ROLE IN ASTHMA. There is evidence for reduced
production of IFN-g by T cells from asthmatic patients,
and this correlates with disease severity (Leonard et al.,
1997; Koning et al., 1997). This appears to be a feature of
atopic disease and is not specific to asthma (Tang et al.,
1993). This suggests that defective IFN-g production
may be important in asthma (Halonen and Martinez,
1997), although no polymorphisms of the IFN-g gene
have been associated with asthma (Hayden et al., 1997).
Administration of exogenous IFN-g prevents airway eo-
sinophilia and hyperresponsiveness after allergen expo-
sure in mice (Iwamoto et al., 1993; Lack et al., 1996).
Liposome-mediated gene transfer of IFN-g to the pulmo-
nary epithelium in sensitized mice before secondary an-
tigen exposure also inhibits the pulmonary allergic re-
sponse (Li et al., 1996). IFN-g-knock-out mice develop
prolonged airway eosinophilia in response to allergen
(Coyle et al., 1996). IFN-g inhibits allergic eosinophilia
(Lack et al., 1996; Zuany Amorim et al., 1994) and air-

way hyperresponsiveness, probably by inducing the for-
mation of IL-10. These studies indicate that IFN-g has a
potential modulating effect on responses to allergen.
Allergen immunotherapy of asthmatic patients results
in increased production of IFN-g by circulating T cells
(Lack et al., 1997) and in increased numbers of IFN-g-
producing T cells in nasal biopsies (Durham et al., 1996).
Corticosteroid treatment also increases IFN-g expres-
sion in asthmatic airways (Bentley et al., 1996), but
IFN-g expression is unexpectedly reduced in corticoste-
roid-resistant patients (Leung et al., 1995). In asthmatic
patients, nebulized IFN-g reduces the number of eosin-
ophils in bronchoalveolar lavage fluid, indicating its
therapeutic potential in asthma (Boguniewicz et al.,
1995).

4. Interleukin-12.
a. SYNTHESIS AND RELEASE. IL-12 was initially recog-

nized as a cytokine capable of synergizing with IL-2 to
increase cytotoxic T lymphocyte responses, as well as an
inducer of IFN-g synthesis by resting human peripheral
blood mononuclear cells in vitro. IL-12 is secreted by
antigen-presenting cells, including B lymphocytes and
monocytes/macrophages (Trinchieri, 1995; Gately et al.,
1998).

b. RECEPTORS. IL-12 receptors are expressed on T cells
and natural killer cells. One component of the IL-12
receptor complex is related to gp130 (Chua et al., 1994).
The expression of the IL-12 receptor b2-subunit under
the influence of IFN-g determines the responsiveness of
Th1 cells to IL-12 and is of critical importance in Th1/
Th2 switching (Rogge et al., 1997).

c. EFFECTS. IL-12 enhances the growth of activated T
cells and natural killer cells (Bertagnolli et al., 1992;
Perussia et al., 1992; Gately et al., 1991; Robertson et al.,
1992) and enhances cytotoxic T cell and natural killer
cell activity (Gately et al., 1992; Robertson et al., 1992;
Kobayashi et al., 1989). IL-12 stimulates natural killer
cells and T cells to produce IFN-g (Schoenhaut et al.,
1992; Wolf et al., 1991; Chan et al., 1991; Kobayashi et
al., 1989), promotes in vitro differentiation of mouse and
human T cells that secrete IFN-g and TNF-a (Hsieh et
al., 1993; Manetti et al., 1993; Chan et al., 1991; Perus-
sia et al., 1992), and inhibits the differentiation of T cells
into IL-4-secreting cells (Hsieh et al., 1993; Manetti et
al., 1993). IL-12 indirectly inhibits IL-4-induced human
IgE responses by IFN-g-dependent and -independent
mechanisms in vitro (Kiniwa et al., 1992). IL-12 can
primarily regulate Th1 cell differentiation, while sup-
pressing the expansion of Th2 cell clones (Manetti et al.,
1993), by early priming of undifferentiated Th cells for
IFN-g secretion (Manetti et al., 1994). Therefore, IL-12
may play an important role in directing the development
of Th1-like T cell responses against intracellular patho-
gens, while inhibiting the development of Th2-like re-
sponses and IgE synthesis. IL-12 may play an important
role in inhibiting inappropriate IgE synthesis and aller-
gic inflammation as a result of allergen exposure.
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d. ROLE IN ASTHMA. IL-12 may play an important role
in inhibiting inappropriate IgE synthesis and allergic
inflammation after allergen exposure. IL-12 treatment
of mice during active sensitization reduces antigen-
induced influx of eosinophils in bronchoalveolar lavage
fluid, inhibits IgE synthesis, and abolishes antigen-in-
duced bronchial hyperresponsiveness (Kips et al., 1996).
After an inflammatory response is established, there is
inhibition of antigen-induced bronchial hyperrespon-
siveness and inflammation (Gavett et al., 1995). The
effects of IL-12 are largely mediated by IFN-g (Brusselle
et al., 1997). In another study in mice, IL-12 adminis-
tered at the time of allergic sensitization decreased spe-
cific IgE levels, tracheal ring responsiveness to acetyl-
choline, and eosinophilia in bronchoalveolar lavage
fluid after allergen challenge, with IL-5 and IL-10 down-
regulation; IL-12 administered after sensitization did
not alter specific IgE levels, had little effect on tracheal
ring responsiveness, and produced a modest effect on the
recruitment of eosinophils, with IL-5 down-regulation
but IL-12 up-regulation (Sur et al., 1996). Thus, the
effect of IL-12 was dependent on the timing of its ad-
ministration, in relation to active sensitization.

IL-12 production and IL-12-induced IFN-g release are
reduced in whole-blood cultures from patients with al-
lergic asthma, compared with normal subjects (Van der
Pouw Kraan et al., 1997). There is a reduction of IL-12
mRNA expression in airway biopsies from patients with
allergic asthma, compared with normal subjects, but
after oral corticosteroid treatment the levels of IL-12
mRNA are increased in corticosteroid-sensitive asth-
matics, whereas no significant changes are observed in
corticosteroid-resistant asthmatics (Naseer et al., 1997).
This contrasts with the inhibitory effects of corticoste-
roids on IL-12 production in human monocytes in vitro
(Blotta et al., 1997). Allergen immunotherapy results in
an increase in IL-12 expression (Hamid et al., 1997).
PGE2 is a potent inhibitor of human IL-12 production
from monocytes (Van der Pouw Kraan et al., 1995).
Similarly, b2-agonists decrease IL-12 production, and
this might link regular inhaled b2-agonist therapy with
a worsening of asthma control (Panina-Bordignon et al.,
1997).

5. Interleukin-18. IL-18 (IFN-g-inducing factor) is a
cytokine that is a potent inducer of IFN-g production
and plays an important role in Th1 responses (Ushio et
al., 1996). Human IL-18 has been cloned from normal
human liver cDNA libraries using murine IL-18 cDNA
clones. IL-18 is synthesized as a precursor molecule
without a signal peptide and requires the IL-1-convert-
ing enzyme (caspase-1) for cleavage into a mature pep-
tide.

The human IL-18 receptor has recently been purified
and characterized. Human IL-1 receptor protein is a
functional IL-18 receptor component (Torigoe et al.,
1997).

Recombinant human IL-18 induces IFN-g production
by mitogen-stimulated peripheral blood mononuclear
cells, enhances natural killer cell cytotoxicity, increases
GM-CSF production, and decreases IL-10 production.
IL-18 induces IL-8, MIP-1a, and MCP-1 expression in
human peripheral blood mononuclear cells in the ab-
sence of any co-stimuli. IL-18 directly stimulates gene
expression and synthesis of TNF-a in CD31/CD41 T
cells and natural killer cells, with subsequent produc-
tion of IL-1b and IL-8 in CD141 monocytes (Puren et al.,
1998). IL-18 induces phosphorylation of p56 (lck) and
MAP kinase, and these may be involved in TCR/CD3-
mediated responses (Tsuji Takayama et al., 1997). IL-18
also activates NF-kB in murine Th1 cells for enhance-
ment of IL-2 gene expression by Th1 cells (Matsumoto et
al., 1997; Robinson et al., 1997). IL-18, together with
IL-12, induces anti-CD40-activated B cells to produce
IFN-g, which inhibits IL-4-dependent IgE production
(Yoshimoto et al., 1997).

E. Growth Factors

Chronic asthma is associated with structural remod-
eling of the airways, with fibrosis (particularly under the
epithelium), increased thickness of the airway smooth
muscle layer, increased numbers of mucus-secreting
cells, and angiogenesis (Redington and Howarth, 1997).
These changes are presumably in response to growth
factors secreted from inflammatory and structural cells
in the airways, and several growth factors have been
implicated in asthma.

1. Platelet-derived growth factor.
a. SYNTHESIS AND RELEASE. PDGF is released from

many different cells in the airways and consists of two
peptide chains, so that AA, BB, or AB dimers may be
secreted by different cells. PDGF-A and -B chains are
both synthesized as HMW precursors, which are then
extensively processed before secretion (Ostman et al.,
1988; Bywater et al., 1988). Posttranslational glycosyla-
tion and proteolytic cleavage (Bywater et al., 1988;
Deuel et al., 1981; Raines and Ross, 1982) both contrib-
ute to the heterogeneity in the apparent molecular
weights of the mature proteins. Most of the PDGF
present in human platelets (from which PDGF was orig-
inally isolated) has been identified as AB dimer, al-
though BB and AA dimers also exist (Hart et al., 1990;
Hammacher et al., 1988; Heldin, 1988). PDGF-like ac-
tivity in the conditioned media of various cells, such as
those derived from smooth muscle, consists predomi-
nantly of the AA dimer (Sejersen et al., 1986). The
sources of PDGF include platelets, macrophages, endo-
thelial cells, fibroblasts, airway epithelial cells, and vas-
cular smooth muscle cells. Various stimuli, such as
IFN-g for alveolar macrophages, hypoxia, basic FGF
(bFGF), and mechanical stress for endothelial cells, and
serum, TNF-a, IL-1, and TGF-b for fibroblasts, can in-
duce PDGF release.
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b. RECEPTORS. The PDGF receptors belong to a family
of closely related receptor proteins that include the re-
ceptor for monocyte-colony stimulating factor and the
c-Kit receptor (Yarden et al., 1986). PDGFs exert their
actions through a family of at least two classes of PDGF
receptors, a and b (Matsui et al., 1989; Hart et al., 1988;
Gronwald et al., 1988). These are single-transmembrane
domain glycoproteins with an intracellular tyrosine ki-
nase domain (Heldin, 1992). Binding of PDGF dimers
induces receptor dimerization, with three possible con-
figurations (aa, ab, and bb). The PDGF receptor a-sub-
unit binds both PDGF A- and B-chains, whereas the
receptor b-subunit binds only PDGF B-chains. There-
fore, PDGF-AA binds only to PDGF receptor aa dimers,
PDGF-AB to receptor aa and ab dimers, and PDGF-BB
to all three configurations (aa, ab, and bb) (Westermark
et al., 1989; Seifert et al., 1989). These receptors are
widely distributed on cells of mesenchymal origin, in-
cluding fibroblasts and smooth muscle cells. Because of
their critical role in cell growth, the expression of PDGF
receptors is usually tightly controlled. However, recep-
tor levels can be regulated by TGF-b, which can increase
the expression of PDGF receptors on human skin fibro-
blasts (Ishikawa et al., 1990; Bryckaert et al., 1988).

c. EFFECTS. PDGF is a major mitogen, with its primary
regulatory role being directed at the cell cycle; it acts as
a competence factor, triggering early events of the cell
cycle that lead to DNA synthesis and mitosis (Larsson et
al., 1989). PDGF induces the expression of competence
genes, including the proto-oncogenes c-myc, c-fos, and
c-jun (Hall et al., 1989; Greenberg et al., 1986). PDGF
may activate fibroblasts to proliferate and secrete colla-
gen (Rose et al., 1986), and it may also stimulate prolif-
eration of airway smooth muscle (Hirst et al., 1992),
which is mediated by the a receptor (Hirst et al., 1996).
PDGF can be a chemoattractant for connective tissue
cells (Grotendorst et al., 1981; Seppa et al., 1982) and
can stimulate fibroblasts to contract collagen lattices
(Clark et al., 1989).

d. ROLE IN ASTHMA. Levels of PDGF-AA, -AB, and -BB
are not increased in asthma, and immunohistochemical
analysis of PDGF-AA and -BB and PDGF receptor a-
and b-subunits does not reveal increased expression
(Chanez et al., 1995). A potential source of PDGF B-
chain has been identified as eosinophils in nasal polyps
or bronchial biopsies from patients with asthma (Ohno
et al., 1995). This, together with their ability to express
TGF-b, has raised the possibility that eosinophils are
involved in the airway remodeling of asthma.

2. Transforming growth factor-b.
a. SYNTHESIS AND RELEASE. Monocytes constitutively

express TGF-b1 mRNA but release the protein only
when activated (Limper et al., 1991; Assoian et al.,
1987). Pulmonary macrophages may store large
amounts of TGF-b during pulmonary inflammation
(Khalil et al., 1989). Lung fibroblasts themselves may be
a source of TGF-b (Kelley et al., 1991), but TGF-b is also

secreted by inflammatory cells, including eosinophils
(Elovic et al., 1994; Ohno et al., 1992), neutrophils (Gro-
tendorst et al., 1989), and airway smooth muscle cells,
and structural cells, such as epithelial cells (Sacco et al.,
1992). Mast cells may be another source (Pennington et
al., 1992). TGF-b is present in the epithelial lining fluid
of the normal lower respiratory tract (Yamauchi et al.,
1988). TGF-b mRNA and protein have been found to be
abundantly expressed in human lung, with TGF-b1 pre-
cursor being immunolocalized throughout the airway
wall, including the epithelium and alveolar macro-
phages, and the mature protein being localized mainly
within the connective tissue of the airway wall (Aubert
et al., 1994).

b. RECEPTORS. The TGF-b receptor exists in three
forms, i.e., high affinity types I and II and low affinity
type III (Wang et al., 1991). The high affinity receptors
are serine/threonine kinases related to the activin recep-
tor and are thought to associate to mediate signal trans-
duction, probably through serine/threonine phosphory-
lation. The type II receptor includes b-glycan and
endoglin in its structure and does not transduce signals,
but it may concentrate TGF-b on the cell surface and
present the ligand to the other receptors.

c. EFFECTS. TGF-b comprises a family of growth-mod-
ulating cytokines that have an important influence on
the turnover of matrix proteins (Moses et al., 1990).
They may either inhibit or stimulate proliferation of
fibroblasts, depending on the presence of other cyto-
kines. TGF-b induces the transcription of fibronectin,
which can function as a chemotactic agent and growth
factor for human fibroblasts (Infeld et al., 1992; Ignotz et
al., 1986). TGF-b may also be involved in the process of
repair of the airway epithelial damage that is character-
istic of asthma, because TGF-b is a potent inducer of
differentiation for normal epithelial cells (Masui et al.,
1986). TGF-b is a potent profibrotic cytokine that stim-
ulates fibroblasts to promote the synthesis and secretion
of many proteins of the extracellular matrix (Raghu et
al., 1989). TGF-b is also a potent chemoattractant for
many cell types, including monocytes, fibroblasts, and
mast cells (Gruber et al., 1994; Wahl et al., 1987). TGF-b
activates monocytes to produce other cytokines, such as
TNF-a, TGF-a, TGF-b, PDGF-B, and IL-1. TGF-b has
complex actions in the immune system. In general,
TGF-b1 inhibits both T and B cells. TGF-b inhibits IL-
1-dependent lymphocyte proliferation (Schmidt et al.,
1982) and blocks IL-2-mediated induction of IL-2 recep-
tors on T cells (Kehrl et al., 1986). TGF-b inhibits pro-
liferation of airway smooth muscle cells (Cohen et al.,
1997).

d. ROLE IN ASTHMA. Expression of TGF-b1 is reported
to be similar in lungs from normal and asthmatic sub-
jects. However, greater expression of TGF-b1 mRNA and
protein by eosinophils from asthmatic subjects has been
reported, with their expression correlating with the se-
verity of asthma and the degree of subepithelial fibrosis
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(Minshall et al., 1997). In another study, TGF-b1 immu-
noreactivity was observed in the epithelium and submu-
cosal cells, such as eosinophils and fibroblasts, but ex-
pression was greater in biopsies from patients with
chronic bronchitis than in those from patients with
asthma (Vignola et al., 1997). Release of TGF-b1 into
bronchoalveolar lavage fluid has been observed after
segmental allergen challenge (Redington et al., 1997b).
The possibility remains that TGF-b (together with
PDGF) may be involved in the remodeling process of
asthma, although it may also participate in modulating
the T cell response.

3. Fibroblast growth factor. FGF represents a family
of heparin-binding growth factors consisting of seven
polypeptides, including acidic FGF and bFGF (Basilico
and Moscatelli, 1992). Acidic FGF and bFGF are potent
modulators of cell proliferation, motility, and differenti-
ation. They are found to be associated with the extracel-
lular matrix. A major role for FGF in the induction of
angiogenesis has been proposed (Folkman and Klags-
brun, 1987). bFGF induces an invasive phenotype in
cultured endothelial cells, enabling them to penetrate
the basement membrane in vitro (Mignatti et al., 1989).
bFGF induces increased production of proteolytic en-
zymes, plasminogen activators, and collagenase (Presta
et al., 1986; Moscatelli et al., 1986; Mignatti et al., 1989).
bFGF binds to heparan sulfate proteoglycans in base-
ment membranes in vivo (Jeanny et al., 1987). In human
adult lung, bFGF has been localized to vascular smooth
muscle and endothelial cells of blood vessels of the lungs
(Cordon Cardo et al., 1990). bFGF has also been detected
at high levels in epithelial cells of the trachea and bron-
chi. bFGF increases expression of the PDGF receptor
a-subunit in human airway smooth muscle and there-
fore indirectly stimulates proliferation (Bonner et al.,
1996).

4. Epidermal growth factor. EGF and TGF-a, which do
not bind heparin, also stimulate angiogenesis (Kelley,
1990). EGF expression is increased in the epithelium of
patients with bronchitis and in the submucosa of pa-
tients with asthma (Vignola et al., 1997). EGF increases
airway smooth muscle proliferation (Cerutis et al.,
1997), and ET-1 potentiates EGF-induced airway
smooth muscle proliferation (Panettieri et al., 1996).
Increases in the number of blood vessels in asthmatic

airways have been described (Li and Wilson, 1997), and
these growth factors may be implicated.

5. Insulin-like growth factor. IGF is produced by air-
way epithelial cells (Cambrey et al., 1995) and is a po-
tent mitogen for airway smooth muscle proliferation
(Noveral et al., 1994). IGF appears to mediate the pro-
liferative effect of LTD4 on airway smooth muscle, at
least in rabbits (Cohen et al., 1995). IGF is a potent
mitogen and activates MAP kinases in airway smooth
muscle (Kelleher et al., 1995).

VII. Chemokines

Chemokines are chemotactic cytokines (8 to 10 kDa)
that are involved in attracting leukocytes into tissues
(table 3). More than 40 chemokines are now recognized
(Luster, 1998). They are divided into families based on
their structures. The major groups are CC chemokines
(b-chemokines), in which two cysteine residues are ad-
jacent to each other, and CXC chemokines (a-chemo-
kines), in which these residues are separated by another
amino acid. The CC chemokines are involved in che-
moattraction of eosinophils, monocytes, and T lympho-
cytes and are therefore of greatest relevance in asthma
(Miller and Krangel, 1992a). A third chemokine family
(C chemokines), with a single cysteine residue (of which
lymphotactin is the first example), and a fourth family
(CXXXC family), with three residues separating the two
cysteine residues (of which fractaline is an example),
have also been described.

A. CC Chemokines

1. Synthesis and metabolism. MIP-1a and MIP-1b
were purified from culture media of endotoxin-stimu-
lated mouse macrophages (Wolpe et al., 1988), and their
genes can be coordinately expressed after stimulation of
T cells (e.g., with anti-CD3), B cells, or monocytes/mac-
rophages (e.g., with lipopolysaccharide) (Berkman et al.,
1995b; Lipes et al., 1988; Miller et al., 1989; Zipfel et al.,
1989; Obaru et al., 1986). The MIP-1a gene is rapidly
induced in human monocytes after adherence to endo-
thelial cells and to other substrates (Sporn et al., 1990).
MCP-1 is a monocyte chemoattractant and activating
factor and is the best characterized CC chemokine, hav-
ing been purified and cloned from different sources
(Matsushima et al., 1989; Yoshimura et al., 1989a,b,c;

TABLE 3
Chemoattractant effects of chemokines

Chemokine Eosinophil T cell Monocyte Neutrophil Others

IL-8 2 2 2 111
RANTES 11 Memory T cells 1 2 Natural killer cells
MCP-1 1 1 11 2 Basophils
MCP-3 1 1 1 2 Dendritic cells
MCP-4 11 1 1 2
MIP-1a 2 CD81 cells 11 Dendritic cells, natural killer cells
Eotaxin 111 2 2 2 Basophils
STCP-1 2 Th2 cells 2 2

STCP-1, stimulated T cell chemoattractant protein-1.
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Miller and Krangel, 1992a). Other CC chemokines,
I-309, and RANTES, were purified and cloned as prod-
ucts of activated T cells (Chang et al., 1989; Schall et al.,
1988; Miller et al., 1989; Miller and Krangel, 1992b).
Subtractive hybridization was used to identify genes
uniquely expressed in T cells, and this led to the discov-
ery of RANTES cDNA, encoding a polypeptide of 91
amino acids (a 8-kDa secreted protein). RANTES gene is
expressed in IL-2-dependent T cell lines. In peripheral
blood mononuclear cells, low but detectable levels of
RANTES transcripts can be measured in unstimulated
cells, and an increase in mRNA levels is observed 5 to 7
days after antigen treatment or phytohemagglutinin
stimulation (Schall et al., 1988). HC-14 (now called
MCP-2), which was discovered in IFN-g-stimulated
monocytes, has also been isolated from osteosarcoma cell
cultures (Van Damme et al., 1992); these cultures also
yielded MCP-3, which has been cloned and expressed
(Opdenakker et al., 1993; Minty et al., 1993). MCP-4 was
also identified in a large-scale sequencing and expres-
sion program for the discovery of new chemokines (Berk-
hout et al., 1997; Uguccioni et al., 1996; Makwana et al.,
1997). Eotaxin is an unusually selective chemokine that
was discovered as an attractant for eosinophils in the
bronchoalveolar lavage fluid obtained from an experi-
mental model of allergen exposure of sensitized guinea
pigs (Jose et al., 1994) and was subsequently shown to be
present in humans (Ponath et al., 1996b). A functionally
similar chemokine, eotaxin-2, was recently described
(Forssmann et al., 1997). Stimulated T cell chemotactic
protein-1 is another newly identified CC chemokine; it is
a chemoattractant for Th2 cells (Chang et al., 1997).

In general, monocytes and tissue macrophages are
rich sources of CC chemokines, usually associated with
de novo synthesis. MCP-1 and MCP-2 are major stimu-
lated products of monocytes. Lymphocytes are sources of
some CC chemokines, particularly RANTES (Schall et
al., 1988, 1992; Miller et al., 1989), I-309 (Miller et al.,
1989, 1990), MIP-1a (Schall et al., 1992; Miller et al.,
1989; Zipfel et al., 1989), and MIP-1b (Zipfel et al., 1989;
Ziegler et al., 1991). Neutrophils can produce MIP-1a
(Kasama et al., 1993). Eosinophils of patients with hy-
pereosinophilic syndrome express mRNA for MIP-1a
(Costa et al., 1993). Epithelial cells stimulated with
IL-1b or TNF-a produce RANTES (Berkman et al.,
1995c) and eotaxin (Lilly et al., 1997) but not MIP-1a.
MCP-1, RANTES, and eotaxin immunoreactivity has
been reported in human airway epithelium (Berkman et
al., 1995c; Sousa et al., 1994). Cultured human airway
epithelial cells and cell lines express RANTES and
MCP-4 in response to stimulation with proinflammatory
cytokines (Berkman et al., 1995c; Kwon et al., 1995;
Stellato et al., 1995, 1997). RANTES and eotaxin are
also produced by cultured human airway smooth muscle
cells (John et al., 1997). MCP-1 and RANTES are pro-
duced by human eosinophils (Ying et al., 1996; Izumi et
al., 1997).

2. Receptors. The chemokine receptors form a family of
structurally and functionally related proteins that are
members of the superfamily of G protein-coupled recep-
tors. At least five CC chemokine receptors (CCRs) have
been identified, with others being more recently cloned.
The known receptors include CCR1, which binds MIP-
1a, RANTES, and MCP-3 (Gao et al., 1993; Neote et al.,
1993), CCR2, which binds MCP-1 and MCP-3 (Charo et
al., 1994; Combadiere et al., 1995), CCR3, which binds
eotaxin, RANTES, MCP-3, and MCP-4 (Ponath et al.,
1996a), CCR4, which binds MCP-1, MIP-1a, and
RANTES (Hoogewerf et al., 1996; Power et al., 1995),
and CCR5, which binds MIP-1a, MIP-1b, and RANTES
(Raport et al., 1996). Chemokine receptor usage by eo-
sinophils has generated considerable interest, because
of the possibility of using receptor antagonists to block
eosinophil influx and degranulation in asthma. CCR3 is
considered to be the eotaxin receptor mainly mediating
chemotaxis and has been identified as being the major
CCR on eosinophils and basophils. An antagonistic
monoclonal antibody selective for CCR3 inhibits eosino-
philia (Heath et al., 1997). Basophils also express CCR3,
which mediates chemotaxis. However, the release re-
sponses of basophils are mediated by activation of the
MCP-1 receptor (CCR2), which is expressed on basophils
but not on eosinophils. Eosinophils also express CCR1,
which is responsible for the MIP-1a response and part of
the RANTES response. CCR5 is not expressed on eosin-
ophils or basophils but is expressed on monocytes, which
also express CCR1, CCR2, and CCR4. Several cytokines,
including IL-2, IL-4, IL-10, and IL-12, can up-regulate
CCR1 and CCR2 in CD45RO1 blood lymphocytes, which
is associated with an increase in the chemotactic activity
of RANTES and MCP-1 for these cells (Loetscher et al.,
1996a).

3. Effects on airways. Chemokines may play a major
role in activating migrating leukocytes and endothelial
cells to increase adhesiveness and in establishing a che-
motactic gradient. MIP-1a that has been immobilized by
binding to proteoglycans binds to endothelium to trigger
the adhesion of T cells (particularly CD81 T cells) to
VCAM-1 (Choudry et al., 1991). MIP-1a has been local-
ized to lymph node endothelium and could act as a
tethered ligand on endothelial cells, thus providing the
required signals for activation of lymphocyte integrins
for adhesion to endothelium and for migration.

RANTES is a powerful eosinophil chemoattractant,
being as effective as C5a and 2 to 3 times more potent
than MIP-1a (Kameyoshi et al., 1992; Rot et al., 1992).
RANTES up-regulates the expression of CD11b/CD18 on
eosinophils (Alam et al., 1993). RANTES and MIP-1a
induce exocytosis of eosinophil cationic protein from cy-
tochalasin B-treated cells, although RANTES is rela-
tively weak in this effect (Rot et al., 1992). When injected
in the skin of dogs, RANTES induces infiltration of eo-
sinophils and monocytes (Meurer et al., 1993). RANTES,
but not MIP-1a, also elicits a respiratory burst from
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eosinophils (Rot et al., 1992). MCP-2, MCP-3, and
MCP-4 are potent chemoattractants for eosinophils
(Uguccioni et al., 1996; Dahinden et al., 1994; Weber et
al., 1995; Makwana et al., 1997; Minty et al., 1993b).
Eotaxin and eotaxin-2 have selective chemoattractant
activities for eosinophils in vitro and in vivo in the skin
(Forssmann et al., 1997). Cooperation between IL-5 and
CC chemokines (such as RANTES and eotaxin) is now
increasingly recognized, with IL-5 being essential for
mobilization of eosinophils from the bone marrow during
allergic reactions and for local release of chemokines to
induce homing and migration into tissues (Collins et al.,
1995; Mould et al., 1997; Rothenberg et al., 1996).

RANTES is a chemoattractant for memory T cells in
vitro (Schall et al., 1990). Human MIP-1a and -b are also
chemoattractants for distinct subpopulations of lympho-
cytes, i.e., MIP-1a for CD81 and MIP-1b for CD41 T
lymphocytes (Schall et al., 1993). RANTES attracts both
phenotypes and acts on resting and activated T lympho-
cytes, whereas MIP-1a and MIP-1b are effective only on
anti-CD3-stimulated cells (Taub et al., 1993a). On the
other hand, MIP-1b but not MIP-1a has been reported to
be chemotactic for resting T cells and enhances the ad-
herence of CD81 but not CD41 cells to VCAM-1 (Tanaka
et al., 1993). MCP-1, MCP-2, MCP-3, and MCP-4 induce
T cell migration (Carr et al., 1994; Loetscher et al.,
1994). Natural killer cells migrate vigorously in re-
sponse to RANTES, MIP-1a, and MCP-1 (Maghazachi et
al., 1994; Loetscher et al., 1996). Another CC chemokine,
interferon-g-inducible 10kDa protein, is a chemoattrac-
tant for human monocytes and promotes T cell adhesion
to endothelial cells (Taub et al., 1993b). The C chemo-
kine lymphotactin also shows T lymphocyte chemoat-
tractant activity (Kelner et al., 1994).

CC chemokines are powerful stimulants of basophils.
MCP-1 is as potent as C5a in stimulating exocytosis in
human basophils (Bischoff et al., 1992; Alam et al., 1992;
Kuna et al., 1992a), with release of high levels of hista-
mine. In the presence of IL-3, IL-5, or GM-CSF, there is
enhanced release of histamine and production of LTC4
(Bischoff et al., 1992; Kuna et al., 1992a). RANTES and
MIP-1a are less effective releasers of histamine from
basophils. MIP-1a is inactive on basophils (Bischoff et
al., 1993). RANTES is the most effective basophil che-
moattractant (Alam et al., 1992; Kuna et al., 1992b;
Bischoff et al., 1993), whereas MCP-1 is more effective as
an inducer of histamine and LT release (Bischoff et al.,
1993). Eotaxin-1 and eotaxin-2 also are chemoattractant
for basophils, in addition to stimulating release of his-
tamine and LTC4 (Forssmann et al., 1997).

The CC chemokines MCP-1, RANTES, I-309, MCP-2,
and MCP-3 attract monocytes in vitro (Miller and Kran-
gel, 1992b; Sozzani et al., 1991b; Rollins et al., 1991b;
Yoshimura et al., 1989b; Schall et al., 1990b; Van
Damme et al., 1992), and MCP-1, MCP-2, and MCP-3
induce selective infiltration of monocytes in animal skin
(Zachariae et al., 1990; Van Damme et al., 1992). All CC

chemokines stimulate intracellular Ca21 release (Miller
and Krangel, 1992b; Bischoff et al., 1993b). MCP-1 also
induces a respiratory burst, the expression of b2-inte-
grins (CD11b/CD18 and CD11c/CD18), and the produc-
tion of IL-1 and IL-6 (Jiang et al., 1992; Zachariae et al.,
1990; Rollins et al., 1991). Growth of tumor cell lines
cultured in the presence of human blood lymphocytes is
inhibited by the addition of MCP-1 (Matsushima et al.,
1989). Dendritic cells increase intracellular Ca21 release
and migrate in response to MCP-3, MCP-4, MIP-1a, and
MIP-5 (Sozzani et al., 1997).

4. Role in asthma. The potential role of chemokines in
asthma is supported by observations that many cell
types present in asthmatic airways (in particular, mono-
cytes/macrophages, T cells, airway smooth muscle cells,
and airway epithelial cells) have the potential to gener-
ate chemokines. CC chemokines can be detected in bron-
choalveolar lavage fluid, although only at low levels,
even after the fluid has been concentrated. Increased
levels of MCP-1, RANTES, and MIP-1a in asthmatic
patients have been reported, and the eosinophil che-
moattractant activity of bronchoalveolar lavage fluid
from asthmatics was blocked by antibodies to RANTES
and MCP-3 (Alam et al., 1996). The increased levels
were not confirmed in other studies (Cruikshank et al.,
1995; Fahy et al., 1997). However, the chemokines MIP-
1a, MCP-1, and RANTES are elevated in bronchoalveo-
lar lavage fluid after segmental allergen challenge (Hol-
gate et al., 1997; Cruikshank et al., 1995). Using a
semiquantitative, reverse transcription-polymerase
chain reaction assay, RANTES but not MIP-1a mRNA
expression has been shown to be increased in bronchial
biopsies from patients with mild asthma (Berkman et
al., 1996a). No differences in MIP-1a mRNA expression
are observed in alveolar macrophages obtained from
normal or asthmatic subjects, but MIP-1a release is
increased with alveolar macrophages from asthmatic
patients (John et al., 1998b). Increased expression of
RANTES and MCP-3 mRNA has been reported in the
airway submucosa of patients with allergic and nonal-
lergic asthma (Humbert et al., 1997b). Although
RANTES expression in the epithelium of the airway
mucosa can be demonstrated by immunohistochemical
analysis, there do not appear to be differences between
normal and asthmatic subjects. The epithelial expres-
sion of RANTES can be inhibited by inhaled corticoste-
roid therapy (Wang et al., 1996). However, the CC che-
mokine MCP-1 has been shown to be overexpressed in
asthmatic epithelium (Sousa et al., 1994). The chemoat-
tractant activity of bronchoalveolar lavage fluid ob-
tained from patients with seasonal asthma, during the
pollen season, was completely suppressed by antibodies
to RANTES and IL-5 (Venge et al., 1996). Eotaxin
mRNA and protein expression is increased in the
airways of asthmatics, mainly in epithelium, T cells,
macrophages, and eosinophils (Mattoli et al., 1997;
Lamkhioued et al., 1997). In guinea pigs, allergen chal-
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lenge induces eotaxin expression mainly in airway epi-
thelium and macrophages (Humbles et al., 1997). Tar-
geted disruption of eotaxin partially reduces antigen-
induced tissue eosinophilia in mice (Rothenberg et al.,
1997). The availability of specific CCR antagonists,
particularly for CCR3, will make it possible to examine
the contributions of these chemokines in allergic inflam-
mation and asthma.

B. CXC Chemokines

There are several CXC chemokines, all of which selec-
tively attract neutrophils. IL-8 has been most carefully
described and is considered in detail here.

1. Synthesis and metabolism. Platelet factor-4, stored
in platelet a-granules, was the first member of the CXC
chemokine family to be described. However, IL-8 [also
referred to as neutrophil-activating protein (NAP)-1] is
the most extensively studied member of the entire che-
mokine superfamily, with its major actions being as a
neutrophil chemoattractant and activator. Several other
CXC chemokines that are similar to IL-8 were discov-
ered in rapid succession, including NAP-2 (arising from
amino-terminal processing of platelet basic protein)
(Walz and Baggiolini, 1990), growth-related oncogene
protein (GRO)-a, GRO-b, and GRO-g (Geiser et al., 1993;
Haskill et al., 1990), epithelial cell-derived neutrophil-
activating protein (Walz et al., 1991a), and granulocyte
chemotactic protein-2 (Proost et al., 1993). A secreted
protein produced by lipopolysaccharide-stimulated mu-
rine macrophages, termed MIP-2, was found to be a
chemoattractant for human neutrophils and to be closely
related to GRO-a (Wolpe and Cerami, 1989). In general,
monocytes and tissue macrophages are rich sources of
CXC chemokines, usually associated with de novo syn-
thesis. Monocytes respond to a wide variety of proin-
flammatory agents, including IL-1b, TNF, GM-CSF,
IL-3, lipopolysaccharide, and immune complexes, to re-
lease IL-8. IL-8 has also been induced after adherence of
monocytes to plastic and after changes in ambient oxy-
gen levels (Metinko et al., 1992; Kasahara et al., 1991).
Eosinophils also release IL-8 after stimulation with the
calcium ionophore A23187, but not with TNF-a or IL-1b
(Braun et al., 1993). Airway epithelial cells and airway
smooth muscle cells stimulated with IL-1b or TNF-a
produce IL-8 (John et al., 1998a; Kwon et al., 1994a,b;
Standiford et al., 1990a; Elner et al., 1990; Galy and
Spits, 1991). IL-8 expression by epithelial cells is in-
creased by respiratory syncytial virus infections (Choi
and Jacoby, 1992) and exposure to neutrophil elastase
(Nakamura et al., 1992).

Several transcriptional regulatory elements, includ-
ing NF-KB, NF-IL-6, AP-1, glucocorticoid element, and
an octamer-binding motif, can bind to the region preced-
ing the first exon (Mukaida et al., 1989). IL-6 and NF-
kB-like factors may act as cis-acting elements in IL-8
mRNA expression (Mukaida et al., 1990). IL-8 mRNA
expression after stimulation with IL-1b or TNF-a is

rapid and results at least partly from transcriptional
activation, as shown by nuclear run-on assays (Mukaida
et al., 1992; Kwon et al., 1994a; Mukaida and Matsus-
hima, 1992; Sica et al., 1990). A secondary phase of IL-8
mRNA expression, after an early rapid increase induced
by IL-1, has been observed with cultured human airway
epithelial cells. Enhancement of expression can be in-
duced by cycloheximide, presumably by coinduction of
inhibitors of synthesis of negative regulatory elements
(Mukaida et al., 1992; Mukaida and Matsushima, 1992).
The stability of IL-8 mRNA may be influenced by RNA
instability elements (AUUUA) found in the 39-untrans-
lated region (Shaw and Kamen, 1986; Matsushima et al.,
1988). IL-8 expression in blood monocytes (Seitz et al.,
1991) and in airway epithelial cells (Kwon et al., 1994b)
can be inhibited by glucocorticoids, and IFN-g, IL-4, and
IL-10 can inhibit IL-8 production in blood monocytes (de
Waal Malefyt et al., 1991a; Standiford et al., 1990b; Seitz
et al., 1991). Most of the effects of glucocorticoids on IL-8
mRNA expression occur through inhibition of transcrip-
tion (Kwon et al., 1994b).

2. Receptors. Two receptors for IL-8 have been cloned,
one of high affinity (IL-8 receptor type 1) and the other
of low affinity (IL-8 receptor type 2) (Murphy and
Tiffany, 1991; Holmes et al., 1991). These receptors form
a family of structurally and functionally related pro-
teins, being members of the superfamily of heptahelical,
rhodopsin-like, G protein-coupled receptors. IL-8 also
induces G protein activation in neutrophils (Kupper et
al., 1992). IL-8 receptor type 1 is specific for IL-8, and
other CXC chemokines do not bind to it (Holmes et al.,
1991). IL-8 receptor type 1 was cloned from a neutrophil
cDNA library that was isolated from cDNA pools by
using its ability to confer IL-8 binding sites to COS cells
(Holmes et al., 1991); the deduced sequence is 77% iden-
tical to that of IL-8 receptor type 2. IL-8 receptor type 2
can be activated by CXC chemokines containing the
sequence Glu-Leu-Arg in the amino-terminal domain,
including IL-8, the GROs, and NAP-2, but not by CC
chemokines (Lee et al., 1992; Murphy and Tiffany,
1991). Neutrophils, basophils, and lymphocytes have
been shown to possess functional receptors.

3. Effects on airways. IL-8 is mainly a neutrophil
chemoattractant and activator. The chemoattractant ac-
tivity of IL-8 is potentiated by its binding to heparan
sulfate or heparin, although the IL-8-activating activity
is reduced (Webb et al., 1993). IL-8 induces shape
changes, transient increases in [Ca21]i, exocytosis (with
release of enzymes and proteins from intracellular stor-
age organelles), and respiratory bursts through activa-
tion of NADPH oxidase (Baggiolini and Wymann, 1990).
IL-8 also up-regulates the expression of two integrins
(CD11b/CD18 and CD11c/CD18) during exocytosis of
specific granules (Detmers et al., 1990, 1991). IL-8 acti-
vates neutrophil 5-LO, with the formation of LTB4 and
5-HETE (Schroder, 1989), and also induces the produc-
tion of PAF (Bussolino et al., 1992).
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IL-8 can also induce [Ca21]i elevations, shape
changes, and release of eosinophil peroxidase in eosino-
phils from patients with hypereosinophilic syndrome
(Kernen et al., 1991). IL-8 has weak chemotactic activity
for either CD41 or CD81 T lymphocytes (Bacon and
Camp, 1990), but intradermal injection of IL-8 in hu-
mans does not attract lymphocytes (Swensson et al.,
1991; Leonard et al., 1991). IL-8 induces the release of
histamine (White et al., 1989; Dahinden et al., 1989) and
cys-LTs (Dahinden et al., 1989) from human blood ba-
sophils, with enhanced release with IL-3, IL-5, or GM-
CSF pretreatment (Bischoff et al., 1991). IL-8 induces a
small release of intracellular Ca21 and a respiratory
burst (Walz et al., 1991b).

4. Role in asthma. An early report showed enhanced
coexpression of IL-8 and GM-CSF in bronchial epithelial
cells from patients with asthma (Marini et al., 1992).
Free IL-8 has been detected in the sera and bronchial
tissue of subjects with severe atopic asthma but not in
samples from normal subjects or patients with mild
atopic asthma, suggesting that IL-8 may be a marker of
severe asthma. IL-8 was also found to be complexed with
IgA, levels of which were increased in bronchial tissue in
asthma (Shute et al., 1997). However, in segmental local
challenge studies of patients with allergic asthma, in-
creased IL-8 levels correlated with neutrophil influx
(Teran et al., 1996), indicating that IL-8 may be mostly
responsible for neutrophil chemotaxis. Enhanced re-
lease of IL-8 from alveolar macrophages obtained from
patients with mild asthma, compared with those from
normal subjects, has been demonstrated (Hallsworth et
al., 1994). There is no increase in IL-8 levels in induced
sputum for patients with mild asthma, in contrast to the
markedly elevated levels for patients with chronic ob-
structive pulmonary disease and bronchiectasis (Chanez
et al., 1996; Keatings et al., 1996). Increased levels of
IL-8 have been measured in bronchoalveolar lavage
fluid from patients with asthma or bronchitis (Chanez et
al., 1996).

IL-8 appears to possess chemotactic activity for
primed eosinophils (Warringa et al., 1991). Human IL-8
is able to induce accumulation of guinea pig peritoneal
eosinophils in guinea pig skin (Collins et al., 1993), and
a human anti-IL-8 antibody inhibited IL-1-induced eo-
sinophil accumulation in rat skin (Sanz et al., 1995).
Local instillation of recombinant human IL-8 to the nose
can lead to extravascular accumulation of eosinophils in
the nasal mucosa of atopic subjects but not normal sub-
jects (Douglass et al., 1994).

VIII. Proteases

Several proteases are secreted in asthma and should
therefore be considered as mediators. Proteases may
have important effects on airway function in asthma.
Mast cell tryptase has been studied in greatest detail,
but other proteases that may be secreted in asthma

include mast cell chymase and matrix metalloprotein-
ases (MMP) (Caughey, 1997).

A. Synthesis and Metabolism

Tryptase is a trypsin-like serine protease that is the
major component of mast cell granules, particularly in
mucosal mast cells (which contain ;10 pg/cell). Several
tryptase genes have been identified, with b-tryptase pre-
dominating over a-tryptase. Tryptase is associated with
heparin in mast cell granules and is secreted by exocy-
tosis. Tryptase is secreted as a glycosylated heparin-
bound tetramer of ;150 kDa and is relatively stable.
Because of its restriction to mast cells and its stability, it
has been used as a marker of mast cell degranulation.

Chymase and the related protease cathepsin G are
found in the connective tissue type of mast cells and are
bound to heparin in mast cell granules. Both have chy-
motrypsin-like activity. Several MMPs comprise a group
of structurally related proteases that are secreted by
inflammatory and structural cells. MMP-9 (gelatinase
B) is expressed in eosinophils of asthmatic airways
(Ohno et al., 1997). Neutrophil elastase, which is a
serine protease derived from neutrophils, may also be
involved in asthma when neutrophilic inflammation is
prominent, such as in severe asthma (Wenzel et al.,
1997).

B. Receptors

Little is known regarding the molecular mechanisms
of the actions of proteases on cell function. MMPs and
neutrophil elastase produce their effects through degra-
dation of matrix proteins, including collagen, elastin,
and fibronectin. Tryptase and chymase cleave specific
proteins. Chymase also degrades matrix proteins and
may activate MMPs by cleaving the active enzyme from
an inactive precursor peptide. Some of the effects of
tryptase and chymase appear to be mediated by protein-
activated receptors that are similar to the thrombin
receptor. Tryptase activates protein-activated receptor-2
(Molino et al., 1997; Dery et al., 1998) by cleaving part of
the amino-terminal extracellular domain; this reveals
sequences that then activate the G protein-coupled re-
ceptor, leading to signal transduction.

C. Effects on Airways

1. Airway smooth muscle. Tryptase increases the re-
sponsiveness of human airways to histamine in vitro,
and this effect is more pronounced in sensitized airways
(Johnson and Knox, 1997). Tryptase may also increase
bronchoconstriction by degrading the bronchodilating
neuropeptides VIP and peptide histidine isoleucine
(Tam et al., 1990). Inhaled tryptase causes bronchocon-
striction and airway hyperresponsiveness in sheep, ef-
fects that are largely mediated by mast cell activation
(Molinari et al., 1996). Tryptase also potently degrades
CGRP (Tam and Caughey, 1990). Tryptase is a potent
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stimulant of airway smooth muscle proliferation (Brown
et al., 1995).

2. Other effects. Tryptase and chymase potently induce
plasma extravasation in guinea pig skin and thus may
contribute to microvascular leakage in asthma (He and
Walls, 1997). Chymase, cathepsin G, and neutrophil
elastase are potent secretagogues in submucosal glands
(Sommerhoff et al., 1989, 1990). Tryptase appears to be
chemotactic for eosinophils and may interact with other
eosinophil chemotactic factors (Walls et al., 1995).

Tryptase is a potent stimulant of fibroblast prolifera-
tion and collagen secretion and appears to act synergis-
tically with other mitogens (Hartmann et al., 1992;
Cairns and Walls, 1997). It may therefore play a role in
the characteristic subepithelial fibrosis observed in
asthmatic airways. Chymase and cathepsin G convert
latent TGF-b1 to its active form, and this may also
promote fibrosis. Tryptase is mitogenic for airway epi-
thelial cells and increases the expression of IL-8 and
ICAM-1 (Cairns and Walls, 1996).

D. Role in Asthma

1. Release. Increased levels of tryptase have been re-
ported in bronchoalveolar lavage fluid after allergen
challenge (Wenzel et al., 1988) and in induced sputum
from asthmatic patients (Louis et al., 1997). Increased
levels of MMP-9 in bronchoalveolar lavage fluid from
asthmatic patients have been reported (Mautino et al.,
1997) and are presumably produced by eosinophils and
alveolar macrophages, which show increased expression
of this enzyme.

2. Effects of inhibitors. The tryptase inhibitor APC 366
inhibits the late response to allergen and airway hyper-
responsiveness in sensitized sheep (Clark et al., 1995).
Lactoferrin, which disrupts the tetrameric structure of
tryptase, has a similar effect (Elrod et al., 1997). In a
preliminary report, nebulized APC 366 administered for
4 days produced a small inhibitory effect on the late
response to allergen but had no effect on airway hyper-
responsiveness to histamine (Krishna et al., 1998). More
potent and selective tryptase inhibitors are now in de-
velopment.
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